

Threading documentation

Overview

	3 Threading Rules

	Diagnostic analyzer rules

	Cookbook for Visual Studio

	Testing a Visual Studio extension that uses JoinableTaskFactory

	Authoring a library with a JoinableTaskFactory dependency

Performance and responsiveness investigation techniques

	Async hang investigations

	Investigating Threadpool starvation issues

Index

Async hang investigations

An “asynchronous hang” is one in which the UI thread is synchronously blocked waiting for an asynchronous operation to complete. Because the operation is an async one, the callstack for operation that must complete to resolve the hang may not be evident on the UI thread or any other.

Finding the cause for an asynchronous hang can be challenging, but it can be done with a live, hung process or with a DMP file that contains the application heap, using WinDbg. The following are the recommended steps for diagnosing the problem:

	Look at the application’s UI thread to understand what scenario is blocking.

	Note whether the callstack includes a JoinableTaskFactory.WaitSynchronously frame. If it does not, but some other synchronously blocking frame does appear, this constitutes a violation of rule #2.

Resolution: Replace uses of Task.Wait(), Task.Result, WaitHandle.WaitOne() or other sync blocking primitives with JoinableTask.Join() or JoinableTaskFactory.Run(Func<Task>).

	Check background threads for any that are blocked on an STA COM call that’s waiting to marshal to the UI thread. If you find any, and they are performing an operation that the UI thread is blocked waiting to complete, the STA switch is probably failing.
The Microsoft internal vsdbg extension allows you to search for such pending RPC calls using the !ftw -rpc command in WinDBG.

Resolution: Modify the code running on the background thread to switch to the UI thread before making the call to the STA COM object, by using await JoinableTaskFactory.SwitchToMainThreadAsync(); per rule #1.

	Use WinDbg [https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools] with the !dumpasync extension to reveal the async methods that do not appear on thread callstacks to identify why an async method did not complete.

Visual Studio specific considerations

If the hang shows a JoinableTaskFactory.WaitSynchronously frame near the top of the callstack on the UI thread, and if the hung application is Visual Studio itself, and if CPS was loaded before the hang, there is probably a DGML file on the disk of the repro machine that contains a hang report that shows you what went wrong. That way you may be able to avoid any WinDBG heap scouring manual investigation. Look for directories with this pattern: %temp%\CPS.* where * is a random GUID.
If you don’t have access to the TEMP directory, you can also get the hang report from the dump file itself:

    ```
    !dumpheap -stat -type CpsJoinableTaskContext
    !dumpheap -mt <MTAddress from previous command>
    !do <object address from previous command>
    !do <address from mostRecentHangReport field>
    ```


Cookbook for Visual Studio

Important for CPS extension authors and clients: please
replace all references to ThreadHelper.JoinableTaskFactory with
this.ThreadHandling.AsyncPump, where this.ThreadHandling is an [Import] IThreadHandling.

Initial setup

	Add a reference to Microsoft.VisualStudio.Threading [https://www.nuget.org/packages/Microsoft.VisualStudio.Threading].

	Add these using directives to your C# source file:

using System.Threading.Tasks;
using Microsoft.VisualStudio.Threading;

	When using Microsoft.VisualStudio.Shell types in the same source file, import that namespace
along with explicitly assigning Task to the .NET namespace so you can more conveniently use .NET Tasks:

using Microsoft.VisualStudio.Shell;
using Task = System.Threading.Tasks.Task;

Installing the analyzers

It is highly recommended that you install the Microsoft.VisualStudio.Threading.Analyzers [https://www.nuget.org/packages/Microsoft.VisualStudio.Threading.Analyzers] NuGet package which adds analyzers to your project to help catch many common violations of the threading rules, helping you prevent your code from deadlocking.

How to switch to a background thread

await TaskScheduler.Default;

How to switch to the UI thread

In an async method

await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();

In a regular synchronous method

First, consider carefully whether you can make your method async first
and then follow the above pattern. If you must remain synchronous, you
can switch to the UI thread like this:

ThreadHelper.JoinableTaskFactory.Run(async delegate
{
 await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();
 // You're now on the UI thread.
});

Canceling requests for the main thread

The SwitchToMainThreadAsync method has an overload that takes a CancellationToken.
It is generally recommended to supply a token to this method to avoid the main thread transition when the operation is no longer necessary.

When a request for the main thread is canceled, a new continuation is scheduled on the threadpool to execute the remainder of the calling async method. When the thread pool continuation executes, an OperationCanceledException will be thrown at the caller.
Note that in some cases, the original request for the main thread may be fulfilled after the token has been canceled but before the threadpool continuation has run. In that case, your async method will continue on the main thread and no exception will be thrown.

The method never throws or yields when the caller is already on the main thread,
unless you specify the optional alwaysYield: true argument to the method.

When you definitely do not want the code following the transition to the main thread to execute if the token has been canceled, you should follow up the request for the main thread with a call to cancellationToken.ThrowIfCancellationRequested();

How to switch to or use the UI thread with a specific priority

For those times when you need the UI thread but you don’t want to introduce UI delays for the user,
you can use the StartOnIdle extension method which will run your code on the UI thread when it is otherwise idle.

await ThreadHelper.JoinableTaskFactory.StartOnIdle(
 async delegate
 {
 for (int i = 0; i < 10; i++)
 {
 DoSomeWorkOn(i);

 // Ensure we frequently yield the UI thread in case user input is waiting.
 await Task.Yield();
 }
 });

If you have a requirement for a specific priority (which may be higher or lower than background), you can use the WithPriority extension method, like this:

var databindPriorityJTF = ThreadHelper.JoinableTaskFactory.WithPriority(someDispatcher, DispatcherPriority.DataBind);
await databindPriorityJTF.RunAsync(
 async delegate
 {
 // The JTF instance you use to actually make the switch is irrelevant here.
 // The priority is dictated by the scenario owner, which is the one
 // running JTF.RunAsync at the bottom of the stack (or just above us in this sample).
 await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();
 });

The way the priority is dictated by the JoinableTaskFactory instance that RunAsync is called on rather than the one on which SwitchToMainThreadAsync is invoked allows you to set the priority for the scenario and then call arbitrary code in VS and expect all of the switches to the main thread that code might require to honor that priority that you set as the scenario owner.

There are several WithPriority extension method overloads, allowing you to typically match exactly the priority your code was accustomed to before switching to use JoinableTaskFactory for switching to the main thread.

Call async code from a synchronous method (and block on the result)

ThreadHelper.JoinableTaskFactory.Run(async delegate
{
 await SomeOperationAsync(...);
});

How to write a “fire and forget” method responsibly?

“Fire and forget” methods are async methods that are called without awaiting the
Task that they (may) return.

Do not implement your fire and forget async method by returning async void.
These methods will crash the process if they throw an unhandled exception.
They also may cause a crash if they are still running when VS tears down the AppDomain on shutdown.

There are two styles of “fire and forget”:

void-returning fire and forget methods

These methods are designed to always be called in a fire and forget fashion, as the
caller only gets a void return value and cannot await the async method even if it wanted to.

These methods should be named to indicate that they start an operation. For example,
instead of calling the method Task DoSomethingAsync() you might call it void StartSomething().

Notwithstanding the void return type, you’ll want to be async internally in order to actually
do the work later instead of on your caller’s callstack. But you also should be sure your async
work finishes before your object claims to be disposed. You can accomplish both of these objectives
using the JoinableTaskFactory.RunAsync method, and tacking on an extension method that captures
failures and reports them for your analysis later. For the Visual Studio team’s own internal use,
the FileAndForget method can be tacked on at the end to send failure reports via VS telemetry fault events.
You may want to handle your own exceptions within the async delegate as well.

void StartOperation()
{
 this.JoinableTaskFactory.RunAsync(async delegate
 {
 await Task.Yield(); // get off the caller's callstack.
 DoWork();
 this.DisposalToken.ThrowIfCancellationRequested();
 DoMoreWork();
 }).FileAndForget("vs/YOUR-FEATURE/YOUR-ACTION"); // Microsoft's own internal extension method
}

Where this.JoinableTaskFactory is defined by your AsyncPackage or, if you don’t have one,
by re-implementing this pattern in your own class:

class MyResponsibleType : IDisposable
{
 private readonly CancellationTokenSource disposeCancellationTokenSource = new CancellationTokenSource();

 internal MyResponsibleType()
 {
 this.JoinableTaskCollection = ThreadHelper.JoinableTaskContext.CreateCollection();
 this.JoinableTaskFactory = ThreadHelper.JoinableTaskContext.CreateFactory(this.JoinableTaskCollection);
 }

 JoinableTaskFactory JoinableTaskFactory { get; }
 JoinableTaskCollection JoinableTaskCollection { get; }

 /// <summary>
 /// Gets a <see cref="CancellationToken"/> that can be used to check if the package has been disposed.
 /// </summary>
 CancellationToken DisposalToken => this.disposeCancellationTokenSource.Token;

 public void Dispose()
 {
 this.Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 this.disposeCancellationTokenSource.Cancel();

 try
 {
 // Block Dispose until all async work has completed.
 ThreadHelper.JoinableTaskFactory.Run(this.JoinableTaskCollection.JoinTillEmptyAsync);
 }
 catch (OperationCanceledException)
 {
 // this exception is expected because we signaled the cancellation token
 }
 catch (AggregateException ex)
 {
 // ignore AggregateException containing only OperationCanceledException
 ex.Handle(inner => (inner is OperationCanceledException));
 }
 finally
 {
 this.disposeCancellationTokenSource.Dispose();
 }
 }
 }
}

Task-returning fire and forget methods

These are your typical async methods, but called without awaiting the resulting Task.

Not awaiting on the Task means that if that async method were to throw an exception
(thus faulting the returned Task) that no one would notice. The error would go unreported
and undetected – until the side effects of the async method are discovered to be incomplete
some other way. In a few cases this may be desirable.
Since calling a Task-returning method without awaiting its result will often make C# emit
a compiler warning, a void-returning Forget() extension method exists so you can tack it
onto the end of an async method call to suppress the compiler warning, and make it clear to
others reading the code that you are intentionally ignoring the result.

DoSomeWork();
DoSomeWorkAsync().Forget(); // no await here
DoABitMore();

Better than Forget() is to use FileAndForget(string) which will handle faulted Tasks by
adding the error to the VS activity log and file a fault event for telemetry collection so
the fault can be detected and fixed.

DoSomeWork();
DoSomeWorkAsync().FileAndForget("vs/YOUR-FEATURE/YOUR-ACTION"); // no await here
DoABitMore();

How can I await IVsTask?

Make sure you have the using directives defined at the top of this document.
That adds a GetAwaiter extension method [https://msdn.microsoft.com/en-us/library/vstudio/hh598836.aspx]
to IVsTask that makes it awaitable.

You can safely await an IVsTask in an ordinary C# async method or inside a
JoinableTaskFactory.Run or RunAsync delegate.

How can I return IVsTask from a C# async method?

The preferred way is to use the JoinableTaskFactory.RunAsyncAsVsTask(Func<CancellationToken, Task>) extension method. This gives you a CancellationToken that is tied
to IVsTask.Cancel().

IVsTask IVsYourNativeCompatibleInterface.DoAsync(string arg1)
{
 return ThreadHelper.JoinableTaskFactory.RunAsyncAsVsTask(
 VsTaskRunContext.UIThreadNormalPriority,
 cancellationToken => this.DoAsync(arg1, cancellationToken));
}

public async Task DoAsync(string arg1, CancellationToken cancellationToken)
{
 await Task.Yield();
}

In a pinch, where all you have is a JoinableTask, you can readily convert it
to an IVsTask by calling the JoinableTask.AsVsTask() extension method as shown
below. But this means the IVsTask.Cancel() method will not be able to communicate
the cancellation request to the async delegate.

public IVsTask DoAsync()
{
 JoinableTask jt = ThreadHelper.JoinableTaskFactory.RunAsync(
 async delegate
 {
 await SomethingAsync();
 await SomethingElseAsync();
 });
 return jt.AsVsTask();
}

How can I block the UI thread for long or async work while displaying a (cancelable) wait dialog?

While it’s generally preferable that you do work quickly or asynchronously so as to not block the user
from interacting with the IDE, it is sometimes necessary and/or desirable to block user input.
While doing so, it’s good to provide feedback so the user knows the application hasn’t hung.
To display a dialog explaining what’s going on while you’re on and blocking the UI thread, and even
give the user a chance to cancel the operation, you can call this extension method on JoinableTaskFactory:

ThreadHelper.JoinableTaskFactory.Run(
 "I'm churning on your data",
 async (progress, cancellationToken) =>
 {
 DoLongRunningWork();
 progress.Report(new ThreadedWaitDialogProgressData("Getting closer to being done.", isCancelable: true));
 await AndSomeAsyncWorkButBlockMainThreadAnyway(cancellationToken);
 });

If your operation cannot be canceled, just drop the CancellationToken parameter from your anonymous delegate
and the dialog that is shown to the user will not include a Cancel button:

ThreadHelper.JoinableTaskFactory.Run(
 "I'm churning on your data",
 async (progress) =>
 {
 DoLongRunningWork();
 progress.Report(new ThreadedWaitDialogProgressData("Getting closer to being done."));
 await AndSomeAsyncWorkButBlockMainThreadAnyway();
 });

How can I initialize my VS package asynchronously?

As of Visual Studio 2015 (Dev14) you can define async VS packages, allowing binaries to be loaded on background threads and for your package to complete async work without blocking the UI thread as part of package load.
Async Package 101 [https://microsoft.sharepoint.com/teams/DD_VSIDE/_layouts/15/WopiFrame.aspx?sourcedoc=%7b84C6ABED-E111-4B5D-B2D6-8B6FAF37F0D4%7d&file=Async%20Package%20101.docx&action=default]

How do I make sure my async work has finished before my VS Package closes?

This is a very important topic because we know VS can crash on shutdown because async tasks or background threads still actively running after all VS packages have supposedly shutdown.
The recommended pattern to solve this problem is to derive from AsyncPackage instead of Package.
Then for any async work your package is responsible for starting but that isn’t awaited on somewhere,
you should start that work with your AsyncPackage’s JoinableTaskFactory property, calling the RunAsync method.
This ensures that on package close, your async work must complete before the AppDomain is shutdown.
Your async work should generally also honor the AsyncPackage.DisposalToken and cancel itself right away when that
token is signaled so that VS shutdown is not slowed down significantly by work that no longer matters.

How do I effectively verify that my code is fully free-threaded?

Code is free-threaded if it (and all code it invokes transitively) can complete on the caller’s thread, no matter which thread that is. Code that is not free-threaded is said to be thread-affinitized, meaning some of its work may require execution on a particular thread.

It is not always necessary for code to be free-threaded. There are many cases where code must run on the main thread because it calls into other code that itself has thread-affinity or is not thread-safe. Important places to be free-threaded include:

	Code that runs in the MEF activation code paths (e.g. importing constructors, OnImportsSatisfied callbacks, and any code called therefrom).

	Code that may run on a background thread, especially when run within an async context.

	Static field initializers and static constructors.

In Visual Studio, thread-affinitized code typically requires the main thread (a.k.a. the UI thread). Code that has main thread affinity may appear to work when called from background threads for a few reasons, including:

	The code can sometimes run without requiring the main thread. For example, it only requires the main thread the first time it runs, and subsequent calls are effectively free-threaded.

	The code may switch itself to the main thread if its caller didn’t call it on that thread. This approach only works if the main thread is available to service such a request to switch from a background thread.

The foregoing conditions can make it difficult to test whether your code is truly free-threaded. Knowing your code is free-threaded is important before executing it off the main thread, particularly when that code executes synchronously, since otherwise it can deadlock or contribute to threadpool starvation.

To test whether your code executes without any requirement on the main thread, you can run that code in VS within such a construct as this:

ThreadHelper.ThrowIfNotOnUIThread(); // this test only catches issues when it blocks the UI thread.
jtf.Run(async delegate
{
 using (jtf.Context.SuppressRelevance())
 {
 await Task.Run(delegate
 {
 var c = ActivateComponent();
 c.UseComponent();
 });
 }
});

This would effectively ensure that the main thread will not respond to any request from your test method, thus forcing a deadlock if one was lurking and could occur in otherwise non-deterministic conditions.

Try to execute such test code as early in the VS process as possible. This will help you catch any issues with code you may call that is thread affinitized the first time it is executed.

Note that being free-threaded is not the same thing as being thread-safe, which is an independent metric. Code can be free-threaded, thread-safe, both, or neither.

How do I effectively verify that my code is fully thread-safe?

Code is thread-safe if your code does not malfunction when called from more than one thread at a time.

It is not always necessary for code to be thread-safe. In fact many classes in the Base Class Library of .NET itself is not thread-safe. Writing thread-safe code involves mitigating data corruption, deadlocks, and higher level goals such as avoiding lock contention and threadpool starvation. Validating that code is thread-safe requires exhaustive reviews and testing, and thread-safety bugs can still slip through. Whether thread-safety should be a goal should typically be determined at the class level and clearly documented. Changing from thread-safe to non-thread-safe should be considered a breaking change. A class should be made thread-safe if being called from multiple threads at once is a supported scenario.

Techniques for writing thread-safe code include:

	Using synchronization primitives such as C# lock when accessing fields.

	Using immutable data structures and interlocked exchange methods while handling race conditions.

Techniques for verifying that code is thread-safe include both thorough code reviews and automated tests. Automated tests should execute your code concurrently. You may find you can shake out different bugs by testing with concurrency levels equal to Environment.ProcessorCount to maximize parallelism and throughput as well as a multiplier of that number (e.g. Environment.ProcessorCount * 3) so that hyper-switching of the CPU leads to different time slices and unique thread-safety bugs to be found. Such tests should verify that unexpected exceptions are not thrown, no hangs occur, and that the data at the conclusion of such concurrent execution is not corrupted.

Code can be made to run concurrently from a unit test using this technique:

int concurrencyLevel = Environment.ProcessorCount; // * 3
await Task.WhenAll(Enumerable.Range(1, concurrencyLevel).Select(i => Task.Run(delegate {
 CallYourCodeHere();
})));

If CallYourCodeHere() executes fast enough, it’s possible that the above does not lead to actual concurrent execution since Task.Run does not guarantee that the delegate executes at a particular time. To increase the chances of concurrent execution, you can use the CountdownEvent class:

int concurrencyLevel = Environment.ProcessorCount; // * 3
var countdown = new CountdownEvent(concurrencyLevel);
await Task.WhenAll(Enumerable.Range(1, concurrencyLevel).Select(i => Task.Run(delegate {
 countdown.Signal();
 countdown.Wait();
 CallYourCodeHere();
})));

The above code will force allocation of a thread for each degree of concurrency you specify, and each thread will block until all threads are ready to go, at which point they will all unblock together (subject to kernel thread scheduling).

Note that being thread-safe is not the same thing as being free-threaded, which is an independent metric. Code can be free-threaded, thread-safe, both, or neither.

Should I await a Task with .ConfigureAwait(false)?

What does it even mean?

When you await an expression (e.g. a Task or Task<T>), that expression must produce an “awaiter”. This is mostly hidden as an implementation detail by the compiler. At runtime this “awaiter” can indicate whether the expression being awaited on represents a completed operation or one that is not yet complete. When the operation is complete, the awaiting code simply continues execution immediately (no yielding, no thread switching, etc.).
When the operation is not complete, the awaiter is asked to execute a delegate when the operation is done.
At a high level, this means that when you write await SomethingAsync() the next line of code in your method will not execute until the Task returned by SomethingAsync() is complete.

Suppose that SomethingAsync() returns a Task that does not complete for 5 seconds. During that time, your method is no longer on the callstack (because it yielded when the Task wasn’t complete). So when the Task completes, it now has a responsibility to invoke the callback the compiler created in order to “resume” your method right where it left off. Which thread should it use to invoke your delegate? That is up to the awaiter to decide.

When you await a Task, the policy for what thread the next part of your async method executes on is determined by a type called TaskAwaiter. It will execute the callback on the same thread/context that your async method was on when it originally awaited the Task. This allows you to be on the UI thread, await something, and then continue your code, still on the UI thread. This is independent of which thread the Task itself may have been running on. TaskAwaiter does this by capturing the SynchronizationContext or TaskScheduler.Current from the caller and using either of those as a means of scheduling the invocation of the callback. When neither of those are present, it will simply schedule the callback to execute on the threadpool.

But what if your code may be on the UI thread, but does not need the UI thread to finish its work after the awaited Task has completed? You can express to the awaited Task that you don’t mind executing on the threadpool by adding .ConfigureAwait(false) to the end of the Task. This causes the compiler to interact with ConfiguredTaskAwaiter instead of TaskAwaiter. The ConfiguredTaskAwaiter’s policy is (if you pass in false when creating it) to always schedule continuations to the threadpool (or in some cases inline the continuation immediately after the Task itself is completed).

Note: Use of .ConfigureAwait(true) is equivalent to awaiting a Task directly. Using this suffix is a way to suppress the warning emitted by some analyzers that like to see .ConfigureAwait(false) everywhere. Where no such analyzer is active, omitting the suffix is recommended for improved code readability.

Short answer

	Use ConfigureAwait(false) when writing app-independent library code. Such a library should avoid frequent use of Task.Wait() and Task.Result.

	Use ConfigureAwait(true) when writing code where a JoinableTaskFactory is available. Use await TaskScheduler.Default; before CPU intensive, free-threaded work.

For Visual Studio packages, the recommendation is to not use .ConfigureAwait(false).

Justification

Awaiting tasks with .ConfigureAwait(false) is a popular trend for a couple reasons:

	It allows the continuation (when scheduled) to run on the threadpool instead of returning to an unknown SynchronizationContext set by the caller. This can improve efficiency, and keep CPU intensive work off the UI thread, thereby increasing an application’s responsiveness to user input.

	It can avoid deadlocks when people use Task.Wait() or Task.Result from the UI thread.

But .ConfigureAwait(false) carries disadvantages as well:

	The tendency for Task.Wait() to work actually encourages such synchronously blocking code, yet deadlocks can still happen if the UI thread is actually required for one of the scheduled continuations.

	It makes for harder to read and maintain async code.

	It may not actually move CPU intensive work off the UI thread since it only makes the switch on the first yielding await.

	It contributes to threadpool starvation when the code using it is called in the context of a JoinableTaskFactory.Run delegate.

The last disadvantage above deserves some elaboration. The JoinableTaskFactory.Run method sets a special SynchronizationContext when invoking its delegate so that async continuations automatically run on the original thread (without deadlocking). When awaits use .ConfigureAwait(false) it ignores the SynchronizationContext and defeats this optimization. As a result the scheduled continuation will occupy a thread from the threadpool, even though the JTF.Run thread is blocked waiting for the delegate to complete and could have executed the continuation. In this scenario, two threads are allocated although only one is active.

The problem grows when multiple frames in the callstack use Task.Wait or JoinableTaskFactory.Run. With each synchronously blocking frame, that thread now becomes useless till the whole operation that it is waiting for is complete, and yet another thread is allocated to make that possible. In some severe cases, we’ve seen the application hang for over a minute while 75+ threadpool threads were allocated one at a time, each to try to make progress after the thread previously allocated just synchronously blocks for completion. Using JoinableTaskFactory.Run consistently prevents this, but only when the code executed by the delegate passed to it avoids using .ConfigureAwait(false).

Code invoked from within JoinableTaskFactory.RunAsync (the async version) does not immediately synchronously block and thus tends to be less of a concern when using .ConfigureAwait(false). However, since a delegated passed to this method can become blocking later using JoinableTask.Join() or await the JoinableTask within another JoinableTaskFactory.Run call, it is similarly recommended to avoid .ConfigureAwait(false) in all JTF contexts.

So how do we get the best of both worlds? How can we have a responsive app, keeping CPU intensive work off the UI thread while not using .ConfigureAwait(false)? The guideline is that when you’re about to start some CPU intensive, free-threaded work is to first explicitly switch to the threadpool using await TaskScheduler.Default;. This simple approach works consistently without many of the disadvantages listed above.

Some important notes

	Using .ConfigureAwait(false) does not guarantee that code after it will be on the threadpool. It has absolutely no effect at all if the Task itself is already complete since the compiler will simply continue execution immediately as if there were no await there.

	If you have a policy to use .ConfigureAwait(false) it is important to use it everywhere (not just on the first await in a method), because the first awaited expression might not yield but the second one may, and therefore the yielding expression must have that suffix to get the effect.

	If the awaited Task completes on the UI thread, continuations are typically not inlined, even if .ConfigureAwait(false) is used when awaiting the Task.

	If the awaited Task completes on a threadpool thread, then it will usually inline continuations that are expecting to be invoked on the threadpool as an optimization. This includes continuations scheduled with .ConfigureAwait(false) and those that were scheduled while already on the threadpool.

The !dumpasync WinDbg extension

The !dumpasync command is a WinDbg extension that produces a list of async method callstacks
that may not appear on thread callstacks. This information is useful when diagnosing the cause
for an app hang that is waiting for async methods to complete.

Tool acquisition

Using this tool requires that you download and install WinDbg [https://aka.ms/windbg-direct-download], which can attach to a running process or DMP file. The !dumpasync extension is only available for WinDbg.

The !dumpasync extension itself is exported from the SosThreadingTools.dll library, which is included in a zip that you can acquire from our releases page [https://github.com/Microsoft/vs-threading/releases].

Usage

Use WinDbg to open your DMP file or attach to your process, then execute the following commands.
Be sure to use either the x86 or x64 version of the SosThreadingTools.dll library, consistent with the version of WinDbg you are running.

.load path\to\SosThreadingTools.dll
!dumpasync

The !dumpasync command will produce output such as:

07494c7c <0> Microsoft.Cascade.Rpc.RpcSession+<SendRequestAsync>d__49
.07491d10 <1> Microsoft.Cascade.Agent.WorkspaceService+<JoinRemoteWorkspaceAsync>d__28
..073c8be4 <5> Microsoft.Cascade.Agent.WorkspaceService+<JoinWorkspaceAsync>d__22
...073b7e94 <0> Microsoft.Cascade.Rpc.RpcDispatcher`1+<>c__DisplayClass23_2+<<BuildMethodMap>b__2>d[[Microsoft.Cascade.Contracts.IWorkspaceService, Microsoft.Cascade.Common]]
....073b60e0 <0> Microsoft.Cascade.Rpc.RpcServiceUtil+<RequestAsync>d__3
.....073b366c <0> Microsoft.Cascade.Rpc.RpcSession+<ReceiveRequestAsync>d__42
......073b815c <0> Microsoft.Cascade.Rpc.RpcSession+<>c__DisplayClass40_1+<<Receive>b__0>d

073cdb7c <0> StreamJsonRpc.ReadBufferingStream+<FillBufferAsync>d__27
.073cdc6c <0> StreamJsonRpc.HeaderDelimitedMessageHandler+<ReadCoreAsync>d__20
..073cdd84 <1> StreamJsonRpc.DelimitedMessageHandler+<ReadAsync>d__22
...073cd93c <0> Microsoft.Cascade.Rpc.Json.JsonRpcStream+<ReadAsync>d__11
....073cd908 <0> Microsoft.Cascade.Rpc.RpcSession+<ReceiveNextMessageAsync>d__39

0730c750 <0> Microsoft.Cascade.Rpc.NamedPipeServer+<RunAsync>d__23
.0730c17c <0> Microsoft.Cascade.Rpc.PipeRpcServer+<AcceptConnectionsAsync>d__2
..0730bff4 <0> Microsoft.Cascade.Agent.Server+<RunAsync>d__15
...072ef4a8 <1> Microsoft.Cascade.Agent.Program+<ExecuteAsync>d__24

07496420 <0> System.Threading.SemaphoreSlim+<WaitUntilCountOrTimeoutAsync>d__32
.07496208 <0> Microsoft.Cascade.Rpc.RpcSession+<SendNextMessageAsync>d__51
..0731c7b4 <0> Microsoft.Cascade.Rpc.RpcSession+<ProcessMessagesAsync>d__38
...0730b6b4 <1> Microsoft.Cascade.Rpc.RpcServer+<CreateSessionAsync>d__8

072fa138 <0> Microsoft.Cascade.Tracing.LogFileTraceListener+<WriteToLogAsync>d__16
0730a138 <0> Microsoft.Cascade.Rpc.NamedPipeServer+<RunServerAsync>d__29

The output above is a set of stacks – not exactly callstacks, but actually “continuation stacks”.
A continuation stack is synthesized based on what code has ‘awaited’ the call to an async method. It’s possible that the Task returned by an async method was awaited from multiple places (e.g. the Task was stored in a field, then awaited by multiple interested parties). When there are multiple awaiters, the stack can branch
and show multiple descendents of a given frame. The stacks above are therefore actually “trees”, and the leading
dots at each frame helps recognize when trees have multiple branches.

If an async method is invoked but not awaited on, the caller won’t appear in the continuation stack.

In the example output above, there are several stacks shown. The two frames at the bottom are two lone async method frames that have no continuations.
In the first stack above, SendRequestAsync method is on top, so it is the method that contains the last await that didn’t resume. The top frame is usually where you want to investigate the cause of an async hang. The rest of the frames in the stack give you a clue as to why this top frame matters to the rest of your application.
​The <0> you see on the top frame is the state of the async state machine that tracks the async method on that frame. This state field should be interpreted based on the following table:

| Value | Meaning |
| – | – |
| -2 | The async method has run to completion. This state machine is likely unrooted and subject to garbage collection. Observing this is rare because the !dumpasync extension filters these out as noise.
| -1 | The async method is currently executing (you should find it on a real thread’s callstack somewhere).
| >= 0 | The 0-index into which “await” has most recently yielded. The list of awaits for the method are in strict syntax appearance order. That is, regardless of code execution, if branching, etc., it’s the index into which await in code syntax order has yielded. For example, if you position the caret at the top of the method definition and search for “await “, and count how many times you hit a match, starting from 0, when you arrive at the number that you found in the state field, you’ve found the await that has most recently yielded. Note that when the code being debugged is compiled with certain Dev14 prerelease versions of the Roslyn compiler, this index is 1-based instead of 0-based.

In some cases, the top most frame may point to an await on an async method without other frames present at the top such as:

0730c750 <0> MyClass+<ExecuteAsync>d__23
.0730c17c <0> MyClass+<StartAsync>d__2

where ExecuteAsync may look like:

async Task ExecuteAsync(...)
{
 await ExecuteInternalAsync(..);
}

This could mean either:

	ExecuteInternalAsync method is executing code before its first await, in which case it should be visible on thread callstacks.

	ExecuteInternalAsync is completed and continuation is scheduled for execution but is not started yet. In Visual Studio case this could be because continuation is scheduled
for main thread but main thread is busy and/or not allowing the task to be executed yet.

Authoring a library with a JoinableTaskFactory dependency

This document describes how to author a library that either itself requires the main thread of its hosting application, or may call out to other code that requires the main thread (e.g. via event handlers). In particular, this document presents ways of obtaining a JoinableTaskContext or JoinableTaskFactory from library code since only applications (not libraries) should instantiate a JoinableTaskContext.

Any instance of JoinableTaskFactory is related to a JoinableTaskContext. There should only be one instance of JoinableTaskContext for a given “main” thread in an application. But since the Microsoft.VisualStudio.Threading assembly does not define a static property by which to obtain this singleton, any library that uses JoinableTaskFactory must obtain the singleton JoinableTaskContext from the application that hosts it. It is the application’s responsibility to create this singleton and make it available for the library to consume.

There are a few scenarios a library author may find themself in:

	The library targets an app that exposes the JoinableTaskContext

	Singleton class with JoinableTaskContext property

	Accept JoinableTaskContext as a constructor argument

If your library is distributed via NuGet, you can help your users follow the threading rules required by JoinableTaskFactory by
making sure your users also get the threading analyzers installed into their projects. Do this by modifying your PackageReference on the vs-threading library to include PrivateAssets="none" so that analyzers are not suppressed:

<ProjectReference Include="Microsoft.VisualStudio.Threading.Analyzers" Version="[latest-stable-version]" PrivateAssets="none" />

It is safe to depend on the latest version of the Microsoft.VisualStudio.Threading.Analyzers package.
When referencing the Microsoft.VisualStudio.Threading package, the version you select should be no newer than the one used by the hosting application.

[bookmark: appoffers]The library targets an app that exposes the JoinableTaskContext

The app uses static properties to expose a JoinableTaskContext

When a library targets just one application, that application may expose a JoinableTaskContext via a static property on a public class.
For example, Visual Studio exposes the JoinableTaskContext from its ThreadHelper.JoinableTaskContext [https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.shell.threadhelper.joinabletaskcontext?view=visualstudiosdk-2017] property.

Look up the documentation for the application you are extending, or reach out to the application’s authors to find out how to obtain the shared instance of JoinableTaskContext.

The app exports a JoinableTaskContext via MEF or other IoC container

A library may use MEF or another IoC mechanism to import a JoinableTaskContext from its environment. In this way, the library may be rehostable across several applications that export JoinableTaskContext.
For example, Visual Studio exports the JoinableTaskContext via MEF since 15.3.

Some apps the library targets export JoinableTaskContext

When a library runs in multiple apps, only a subset of which actually export a JoinableTaskContext, it can be cumbersome to write code to handle its presence and absence all the time. It may be more convenient to instantiate your own instance of JoinableTaskContext when in an application that does not export it. Do this with care, since there should only be one JoinableTaskContext for a given main thread in an application. If you create your own because MEF doesn’t export it, but the application does in fact have a shared instance that is obtainable another way, you could be introducing deadlocks into that application. Be sure to only use this mechanism when you know the app(s) hosting your library either export the JoinableTaskContext or have none at all. The following code snippet shows how to conditionally import it, and then ensure you have something you can import everywhere else that is reliable:

[Export]
internal class ThreadingContext
{
 [ImportingConstructor]
 public ThreadingContext([Import(AllowDefault = true)] JoinableTaskContext joinableTaskContext)
 {
 // If no MEF export is found, we create our own instance.
 // Our private instance will only work if this MEF part is activated on the main thread of the application
 // since creating a JoinableTaskContext captures the thread and SynchronizationContext.
 JoinableTaskContext = joinableTaskContext ?? new JoinableTaskContext();
 }

 /// <summary>
 /// Gets the <see cref="Microsoft.VisualStudio.Threading.JoinableTaskContext" /> associated
 /// with the application if there is one, otherwise a library-local instance.
 /// </summary>
 /// <devremarks>
 /// DO NOT export this property directly, since that will lead to MEF observing TWO exports
 /// in the apps that export this instance already, which will break everyone using this MEF export.
 /// </devremarks>
 public JoinableTaskContext JoinableTaskContext { get; }
}

The rest of your library can then import your ThreadingContext class:

internal class SomeUserOfJTF
{
 [Import]
 ThreadingContext ThreadingContext { get; set; }

 public async Task SomeMainThreadMethodAsync(CancellationToken cancellationToken)
 {
 await this.ThreadingContext.JoinableTaskContext.Factory.SwitchToMainThreadAsync(cancellationToken);
 // Do work here.
 }
}

[bookmark: singleton]Singleton class with JoinableTaskContext property

If your library doesn’t target any application specifically, the library can indicate in its documentation that to run successfully, a hosting application must set the JoinableTaskContext property exposed by the library. This works particularly well if your library has a natural entrypoint class where that JoinableTaskContext can be set. This may be a singleton/static class. For example:

public static class LibrarySettings
{
 private static JoinableTaskContext joinableTaskContext;

 /// <summary>
 /// Gets or sets the JoinableTaskContext created on the main thread of the application hosting this library.
 /// </summary>
 public static JoinableTaskContext JoinableTaskContext
 {
 get
 {
 if (joinableTaskContext is null)
 {
 // This self-initializer is for when an app does not have a `JoinableTaskContext` to pass to the library.
 // Our private instance will only work if this property getter first runs on the main thread of the application
 // since creating a JoinableTaskContext captures the thread and SynchronizationContext.
 joinableTaskContext = new JoinableTaskContext();
 }

 return joinableTaskContext;
 }

 set
 {
 Assumes.True(joinableTaskContext is null || joinableTaskContext == value, "This property has already been set to another value or is set after its value has been retrieved with a self-created value. Set this property once, before it is used elsewhere.");
 joinableTaskContext = value;
 }
 }
}

This pattern and self-initializer allows all the rest of your library code to assume JTF is always present (so you can use JTF.Run and JTF.RunAsync everywhere w/o feature that JTF will be null), and it mitigates all the deadlocks possible given the host constraints.

Note that when you create your own default instance of JoinableTaskContext (i.e. when the host doesn’t), it will consider the thread you’re on to be the main thread. If SynchronizationContext.Current is object it will capture it and use it to switch to the main thread when you ask it to (very similar to how VS works today), otherwise any request to SwitchToMainThreadAsync will never switch the thread (since no SynchronizationContext was supplied to do so) but otherwise JTF continues to work.

[bookmark: ctor]Accept JoinableTaskContext as a constructor argument

If your library is app-agnostic (such that it cannot use an app-specific mechanism to obtain an instance of JoinableTaskContext) and has no good singleton class on which the app can set the JoinableTaskContext instance for the entire library’s use, the last option is simply to take a JoinableTaskContext instance as a parameter when you need it.

For example, the AsyncLazy<T> constructor accepts a JoinableTaskFactory as an optional parameter [https://github.com/Microsoft/vs-threading/blob/027bff027c829cab6be54dbd15551d763199ebf0/src/Microsoft.VisualStudio.Threading/AsyncLazy.cs#L60].
When you make the JoinableTaskContext/JoinableTaskFactory argument optional, the VSTHRD012 rule can guide your library’s users to specify it if they have it available.

Testing Visual Studio extensions and packages

Considerations when using JoinableTaskFactory in code called from unit tests

By default, the ThreadHelper.JoinableTaskFactory [https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.shell.threadhelper.joinabletaskfactory?view=visualstudiosdk-2019#Microsoft_VisualStudio_Shell_ThreadHelper_JoinableTaskFactory] and AsyncPackage.JoinableTaskFactory [https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.shell.asyncpackage.joinabletaskfactory?view=visualstudiosdk-2019#Microsoft_VisualStudio_Shell_AsyncPackage_JoinableTaskFactory] properties only works for code running in the VS process.
Unit testing your code that relies on these properties may throw exceptions.

Important: Your product code should never instantiate its own JoinableTaskContext.
Always use the one from ThreadHelper.JoinableTaskContext.

To get ThreadHelper (and AsyncPackage) to work within a unit test process, you may use the VS SDK Test Framework [https://aka.ms/vssdktestfx].
This framework includes instructions both for MSTest and Xunit to enable your tests to run code that includes usage of ThreadHelper, the global IServiceProvider, and other APIs that typically only work in the VS process.

3 Threading Rules

Background

In Visual Studio 2013, we consolidated all our lessons learned from writing a complex,
multi-threaded component of Visual Studio into a small and simple set of
rules to avoid deadlocks, unwanted reentrancy, and keep an easier to maintain
codebase. We do this by comprehensively applying just three rules, as outlined
below. In each case, the instance of JoinableTaskFactory used in the samples
comes from ThreadHelper.JoinableTaskFactory (except for code in CPS and its
extensions).

The Rules

The rules are listed below with minimal examples. For a more thorough explanation with more examples, check out this slideshow [https://www.slideshare.net/aarnott/the-3-vs-threading-rules].

Rule #1. If a method has certain thread apartment requirements (STA or MTA) it must either:

	Have an asynchronous signature, and asynchronously marshal to the appropriate
thread if it isn’t originally invoked on a compatible thread. The recommended
means of switching to the main thread is:

await joinableTaskFactoryInstance.SwitchToMainThreadAsync();

OR

	Have a synchronous signature, and throw an exception when called on the wrong thread.
This can be done in Visual Studio with ThreadHelper.ThrowIfNotOnUIThread() or
ThreadHelper.ThrowIfOnUIThread().

In particular, no method is allowed to synchronously marshal work to
another thread (blocking while that work is done) except by using the second rule (below).
Synchronous blocks in general are to be avoided whenever possible.

Rule #2. When an implementation of an already-shipped public API must call asynchronous code and block for its completion, it must do so by following this simple pattern:

joinableTaskFactoryInstance.Run(async delegate
{
 await SomeOperationAsync(...);
});

Rule #3. If ever awaiting work that was started earlier, that work must be joined.

For example, one service kicks off some asynchronous work that may later become synchronously blocking:

JoinableTask longRunningAsyncWork = joinableTaskFactoryInstance.RunAsync(
 async delegate
 {
 await SomeOperationAsync(...);
 });

then later that async work becomes blocking:

longRunningAsyncWork.Join();

or perhaps

await longRunningAsyncWork;

Note however that this extra step is not necessary when awaiting is
done immediately after kicking off an asynchronous operation.

In particular, no method should call Task.Wait() or Task.Result on
an incomplete Task.

Additional “honorable mention” rules: (Not JTF related)

Rule #4. Never define async void methods. Make the methods return Task instead.

	Exceptions thrown from async void methods always crash the process.

	Callers don’t even have the option to await the result.

	Exceptions can’t be reported to telemetry by the caller.

	It’s impossible for your VS package to responsibly block in Package.Close
till your async work is done when it was kicked off this way.

	Be cautious: async delegate or async () => become async void
methods when passed to a method that accepts Action delegates. Only
pass async delegates to methods that accept Func<Task> or
Func<Task<T>> parameters.

Frequently Asked Questions

Do I need to follow these rules?

All code that runs in Visual Studio itself should follow these rules.
These rules have been reviewed by several senior and principal developers
and VS architects, who have reviewed these rules and feel that VS
would do well to follow them in managed code where possible.

Any other GUI app that invokes asynchronous code that it must occasionally
block the UI thread on is also recommended to follow these rules.

Why should a method that has a dependency on a specific (kind of) thread be async?

Efficiency and responsiveness: Switching threads means that the original
thread either can do something else productive (e.g., execute more work from
the threadpool queue, or respond to more messages on the main thread) or
that it uselessly blocks doing nothing. Threads are not free. Threadpool
threads allocate 1MB of stack space and are limited in quantity. The main
thread is even more precious since it’s tied directly to responsiveness
and lack thereof. So any opportunity you have to allow your calling thread
to return to a productive state is worth considering.

Information hiding: the caller no longer has to know what thread the method
requires, whether it’s thread-safe, etc. The implementation can change
over time to add or remove thread affinity, or to switch from locking to
scheduling for thread safety, etc.

Why do I need to use JoinableTaskFactory.Run to synchronously block on asynchronous work rather than just calling Task.Wait() or Task.Result?

If you’re on the main thread, because Task.Wait or Task.Result will often
deadlock because you’re now synchronously blocking the main thread for
the completion of a task that may need the main thread to complete.

If you’re on a threadpool thread, it means that you’re occupying one
threadpool thread to do nothing but block, while other threadpool threads
get enlisted to execute continuations of this work that your own blocking
thread is perfectly capable of executing. When you see .Wait() and
asynchronous code mixed together, you tend to see call stacks with mixed
async and sync methods in it, which means that it may not be just one
thread that is blocked waiting. In fact calling .Wait() could mean your
code is blocking several threadpool threads at once, all to get just one
sequence of code execution to complete.

In contrast, when you use JoinableTaskFactory.Run, main thread deadlocks
and threadpool exhaustion are automatically mitigated by reusing the
blocking thread to execute the continuations.

Why not rely on COM marshaling to switch to the main thread when necessary?

There are several reasons for this:

	The COM transition synchronously blocks the calling thread. If the
main thread isn’t immediately pumping messages, the MTA thread will
block until it handles the message. If you’re on a threadpool thread,
this ties up a precious resource and if your code may execute on
multiple threadpool threads at once, there is a very real possibility
of threadpool starvation.

	Deadlock: if the main thread is blocked waiting for the background
thread, and the main thread happens to be on top of some call stack
(like WPF measure-layout) that suppresses the message pump, the code
that normally works will randomly deadlock.

	When the main thread is pumping messages, it will execute your code,
regardless as to whether it is relevant to what the main thread may
already be doing. If the main thread is in the main message pump,
that’s fine. But if the main thread is in a pumping wait (in
managed code this could be almost anywhere as this includes locks,
I/O, sync blocks, etc.) it could be a very bad time. We call these
bad times “reentrancy” and the problem comes when you have component
X running on the main thread in a pumping wait, the component Y
uses COM marshalling to re-enter the main thread, and then Y calls
(directly or indirectly) into component X. Component X is typically
written with the assumption that by being on the main thread, it’s
isolated and single-threaded, and it usually isn’t prepared to handle
reentrancy. As a result, data corruption and/or deadlocks can result.
Such has been the source of many deadlocks and crashes in VS for the
last few releases.

	Any method from a VS service that returns a pointer is probably
inherently broken when called from a background thread. For example,
ItemIDs returned from IVsHierarchy are very often raw pointers cast
to integers. These pointers are guaranteed to be valid for as long
as you’re on the main thread (and no event was raised to invalidate
it). But when you call a IVsHierarchy method to get an ItemID back
from a background thread, you leave the STA thread immediately as
the call returns, meaning the pointer is unsafe to use. If you then
go and pass that pointer back into the project system, the pointer
could have been invalidated in the interim, and you’ll end up causing
an access violation crash in VS. The only safe way to deal with
ItemIDs (or any other pointer type) is while manually marshaled to
the UI thread so that you know they are still valid for as long as
you hold and use them.

	If your method runs on a background thread and has a loop that
accesses a VS service, that can incur a lot of thread transitions
which can hurt performance. If you were explicit in your code about
the transition, you’d very likely move it to just before you enter
the loop, which would make your code more efficient from the start.

	Some VS services don’t have proxy stubs registered and thus will fail
to the type cast or on method invocation when your code executes on
a background thread.

	Some VS services get rewritten from native to managed code, which
subtly changes them from single-threaded to free-threaded services.
Unless the managed code is written to be thread-safe (most is not)
this means that your managed code calling into a managed code VS
service on a background thread will not transition to the UI thread
first, and you are cruising for thread-safety bugs (data corruption,
crashes, hangs, etc). By switching to the main thread yourself first,
you won’t be the poor soul who has crashes in their feature and has
to debug it for days until you finally figure out that you were causing
data corruption and a crash later on. Yes, you can blame the free
threaded managed code that should have protected itself, but that’s
not very satisfying after days of investigation. And the owner of
that code may refuse to fix their code and you’ll have to fix yours anyway.

How do these rules protect me from re-entering random code on the main thread?

By always using asynchronous mechanisms to marshal to the UI thread, you’re
effectively send a PostMessage to the UI thread, which will not re-enter
the main thread when it is in a filtered message pump (i.e. a synchronously
blocking Wait). When you use this line in particular:

await joinableTaskFactoryInstance.SwitchToMainThreadAsync();

It not only posts a message to the UI thread but also communicates with
the rest of the threading framework to avoid deadlocks in the event that
the main thread is blocked waiting for you, and you’re waiting for the
main thread. That is, using this method to get to the UI thread just works:
it avoids both deadlocks and undesirable reentrancy. The only time it
deadlocks is when the threading rules listed above are not being followed.

Am I protected from other code re-entering my own code while it executes on the main thread?

Yes, somewhat. When you call JoinableTaskFactory.Run with an async delegate,
when your delegate yields (using await) the message pump is temporarily
stopped until relevant work needs to come back to the UI thread to unblock
you so your code can complete its execution. This is a significant amount
of protection since 3rd party code has the greatest opportunity to re-enter
the main thread while the main thread is waiting for background work to
complete, and the JoinableTaskFactory prevents this from happening.

However, when your code is actively running on the main thread reentrancy
can occur when you call synchronously blocking code (contested locks,
I/O, etc.) simply by virtue of the DispatcherSynchronizationContext that
is responsible for the synchronous block. While you can mitigate this by
disabling the message pump yourself, it’s usually not a good idea because
3rd party code you may be calling could be relying on a functioning message
pump.

I’m trying to analyze a hang around code that uses JoinableTaskFactory, but since transitions are asynchronous the active threads’ call stacks don’t tell the whole story. How can I find the cause and fix the hang?

Debugging async hangs in general is lacking debugger tooling support at
the moment. The debugger and Windows teams are working to improve that
situation. In the meantime, we have learned several techniques to figure
out what is causing the hang, and we’re working to enhance the framework
to automatically detect, self-analyze and report hangs to you so you have
almost nothing to do but fix the code bug.

In the meantime, the most useful technique for analyzing async hangs is to
attach WinDBG to the process and dump out incomplete async methods’ states.
This can be tedious, but we have a script in this file that you can use
to make it much easier: Async hang debugging [https://github.com/Microsoft/VSProjectSystem/blob/master/doc/scenario/analyze_hangs]

What is threadpool exhaustion, and why is it bad?

See our threadpool starvation doc.

I’m writing an async method that isn’t in a JoinableTask. Should I use JTF.SwitchToMainThreadAsync() to get to the UI thread?

Yes. JoinableTaskFactory.SwitchToMainThreadAsync() works great outside
a JoinableTask. It simply posts the continuation to the main thread for
execution, which is the generally accepted safe mechanism for asynchronously
marshaling to the main thread. And if the caller is already on the main
thread, then using this technique is extremely lightweight as you avoid
allocating any closures and delegates.

Keep in mind that although you’re not calling this async method within
a JoinableTask, a caller even lower in the call stack may actually have
created one before it called your code. This makes it an especially good
idea to use JTF.SwitchToMainThreadAsync(), as it means if your caller ever
synchronously blocks on the completion of your code you won’t deadlock.

One more reason: if you don’t use this method, you’ll probably be hard-coding
a priority of how to get to the main thread (background, normal, high).
But often the code that needs the main thread isn’t the outer scenario,
and therefore shouldn’t really be making the decision about the priority to
the UI thread. For example, your same code may be called from a background
operation and another time as a foreground operation, without your code able
to discern between the two and make the appropriate choice for priority,
and doing so would add unnecessary complexity to your code. Instead, just
focus on the fact that at this point, your code needs the main thread and
call JTF.SwitchToMainThreadAsync(). This allows your caller to set the
priority via the JoinableTask it may call your code within.

What message priority is used to switch to (or resume on) the main thread, and can this be changed?

JoinableTaskFactory’s default behavior is to switch to the main thread using
SynchronizationContext.Post, which typically posts a message to the main thread,
which puts it below RPC and above user input in priority.

How to use a different priority for switching to the main thread in VS

The following describes how to replace the mechanism for getting to the
UI thread in a host-independent way:

You can set your own priority by creating your own derived type of
JoinableTaskFactory and overriding the PostToUnderlyingSynchronizationContext
method. This method is responsible both for initial switches to the UI
thread as well as resuming on the UI thread after a yielding await.

Note that the JoinableTaskFactory class has no default constructor, so when
implementing your own JoinableTaskFactory-derived type you will need to add
your own constructor that chains in the base constructor, passing in the
required parameters. You are then free to directly instantiate your derived
type by passing in either a JoinableTaskContext or a JoinableTaskCollection.

For more information on this topic, see Andrew Arnott’s blog post
Asynchronous and multithreaded programming within VS using the
JoinableTaskFactory [https://devblogs.microsoft.com/premier-developer/asynchronous-and-multithreaded-programming-within-vs-using-the-joinabletaskfactory/].

Investigating thread starvation issues

Summary

Thread starvation are cases where tasks dispatched to managed thread pool doesn’t start executing immediately due to other work in the thread pool. In certain cases, the starvation can cause task execution to delay up to a second and if the main thread is waiting for the task to complete, this will cause elapsed time regressions as well as responsiveness issues in the product.

A thread pool starvation issue usually manifests itself as a long blocked time on main thread waiting for background work.

Details about CLR thread pool

In general CLR thread pool is designed short running tasks that don’t block the threads and CLR will adjust active worker thread counts to maximize throughput. Because of this, long running tasks that block on network IO, other async tasks can cause problems in how CLR allocates threads. In order to avoid these issues, it is recommended to always use async waits even in thread pool threads to avoid blocking a thread with no actual work being done. There are async APIs available already to do file IO, network IO that should make this easier.

CLR maintains two different statistics for managing thread pool threads. First is the reserved threads which are the actual physical threads created/destroyed in the system. Second is the active thread count which is the subset of the first that are actually used for executing jobs.

In summary, not all of the thread pools threads visible in traces are actively used by CLR to schedule jobs instead majority of them are kept in reserved state which makes it very hard to analyze starvation from CPU/thread time samples alone without knowing the active thread count available for work.

For the logic of making more threads available for work, CLR will follow a something similar to:

	For anything up to MinThreads, which is equal to number of cores by default, reserved threads will be created on demand and will be made available on demand.

	After that point, if more work is still queued CLR will slowly adjust available thread count, creating reserved threads as needed or promoting existing reserved threads to available state. As this happens CLR will continue to monitor work throughput rate.

	For cases where available thread count is higher than min count, the CLR algorithm above might also decrease available thread count even if more work is available to see if throughput increases with less parallel work. So the adjustments usually a follow an upward trending zig zag pattern when work is constantly available.

	Once thread pool queue is empty or number of queued items decreases, CLR will quickly retire available threads to reserved status. In traces we see this happening under a second for example if no more work is scheduled.

	Reserved threads will only be destroyed if they are not used for a while (in order of minutes). This is to avoid constant cost of thread creation/destruction.

On a quad core machine, there will be minimum of 4 active threads at any given time. A starvation may occur anytime these 4 active threads are blocked in a long running operation.

Investigating the root cause of thread starvation

We use PerfView [https://aka.ms/perfview] for these investigations.

When to suspect thread pool starvation

First, consider how we might come to suspect that thread pool starvation is to blame for a performance or responsiveness problem in the application. In PerfView if we were looking at a sluggish scenario with the CPU Stacks window, we might observe this:

[image: _images/cpu_stacks_showing_threadpool_starvation.png]PerfView CPU Stacks view showing large columns of no CPU activity

Notice how the When column shows several vertical columns of time where there is little or no CPU activity. This is a good indication that we have either excessive lock contention or thread pool exhaustion.

Visual Studio specific tips

Recent versions of Visual Studio raise an ETW event called Microsoft-VisualStudio-Common/vs_core_perf_threadpoolstarvation when thread pool starvation is detected. This is a sure clue of the problem and can give you a time range within the trace to focus your investigation.

[image: _images/vs_threadpoolstarvation_event.jpg]PerfView showing the VS ETW event that indicates thread pool starvation

Investigation steps

While the CLR has thread pool ETW events to indicate thread starvation, these events are not included in a trace due by default to their cost and volume. You can however use the Thread Time Stacks view in PerfView to analyze what work was going on in the thread pool during the time the main thread was blocked to see if starvation was an issue or not.

	Open the trace in PerfView and open the Thread Time stacks view filtered to the process you suspect may be experiencing thread pool starvation. You need to open the view from PerfView main window instead of scenarios view. The one opened from scenarios view will not show work that was started before the scenario which might be important in this case.

	In the Thread Time Stacks window, set the Start and End fields to the time range where you had a responsiveness problem.

	Make sure symbols for the clr module are loaded.

	In the “By Name” tab, find the clr!ThreadpoolMgr::ExecuteWorkRequest frame and invoke the “Include Items” command. This will add the frame to the IncPats field and filter all frames and stacks to those found on threadpool threads.

	Also in the “By Name” tab, find the BLOCKED_TIME row and invoke the “Show Callers” command. [image: _images/blocked_time.png]PerfView By Name tab showing BLOCKED_TIME This will show all stacks that led to any thread pool thread waiting instead of executing on the CPU. [image: _images/blocked_time_callers.png]PerfView Callers of BLOCKED_TIME

Take a look at the stacks where the most threads or the most time is spent blocked. This is the code where you should focus your effort to remove the synchronous block. Common mitigations include:

	Switch synchronous waits to async awaits for I/O, a switch to the main/UI thread, or a semaphore.

	Avoid lock contention by throttling down concurrency (perhaps to just one sequential operation at once) or using a lock-free design.

Useful background

In a thread pool exhaustion case, you will have at least as many thread pool threads as you have CPU cores on the machine the trace was taken from. Once all thread pool threads have blocked at the same time, the CLR will wait one second before adding another thread to the threadpool in an attempt to make more progress. Each second that passes without progress another thread may be added.

The CLR may deactivate these excess thread pool threads without killing them such that they do not participate in dequeuing work from the thread pool. In these investigations then, the presence of a thread pool thread that isn’t blocked by user code is not a clear indication that starvation is not occurring. In fact it may still be occurring if all thread pool threads that the CLR deems to be “active” are blocked in user code.

RPS specific notes

	RPS machines are quad core machines.

	ETW events that indicate threadpool starvation are not collected on RPS machines due to their cost and volume.

Avoiding thread pool starvation

There are multiple major causes of thread pool starvation. Each is briefly described below with mitigation options.

Blocking a thread pool thread while waiting for the UI thread

When a thread pool thread tries to access an STA COM object such as Visual Studio’s IServiceProvider or a service previously obtained from this interface, the call to that COM object will require an RPC (Remote Procedure Call) transition which blocks the thread pool thread until the UI thread has time to respond to the request. Learn more about RPC calls from this blog post [https://blogs.msdn.microsoft.com/andrewarnottms/2014/05/07/asynchronous-and-multithreaded-programming-within-vs-using-the-joinabletaskfactory/].

The mitigation for this is to have the method that is executing on the thread pool asynchronously switch to the UI thread before calling into an STA COM object. This allows the thread pool thread to work on something else on the thread pool’s queue while the UI thread is busy or servicing this request. After interacting with the STA COM object, the async method can switch back to the thread pool if desired.

Flooding the thread pool queue

When a component sends many work items to the thread pool in a short timeframe, the queue will grow to store them till one of the thread pool threads can execute them all. Any subsequently queued items will be added to the end of the queue, regardless of their relative priority in the application. When the queue is long, and a work item is appended to the end of the queue that is required for the UI of the application to feel responsive, the application can hang or feel sluggish due to the work that otherwise should be running in the background without impacting UI responsiveness.

The mitigation is for components that have many work items to send to the threadpool to throttle the rate at which new items are introduced to the threadpool to a reasonably small number. This helps keep the queue short, and thus any newly enqueued work will execute much sooner, keeping the application responsive. Throttling work can be done such that the CPU stays busy and the background work moving along quickly, but without sacrificing UI responsiveness. See this blog post [https://blogs.msdn.microsoft.com/andrewarnottms/2017/05/11/limiting-concurrency-for-faster-and-more-responsive-apps/] for more information on how to easily throttle concurrent work.

Learn more

Vance Morrison wrote a blog post [https://blogs.msdn.microsoft.com/vancem/2018/10/16/diagnosing-net-core-threadpool-starvation-with-perfview-why-my-service-is-not-saturating-all-cores-or-seems-to-stall/] describing this situation as well.

VSTHRD001 Avoid legacy thread switching methods

Switching to the UI thread should be done using JoinableTaskFactory.SwitchToMainThreadAsync
rather than legacy methods such as Dispatcher.Invoke or ThreadHelper.Invoke.
This avoids deadlocks and can reduce threadpool starvation.

Examples of patterns that are flagged by this analyzer

ThreadHelper.Generic.Invoke(delegate {
 DoSomething();
});

or

Dispatcher.CurrentDispatcher.BeginInvoke(delegate {
 DoSomething();
});

Solution

Use await SwitchToMainThreadAsync() instead, wrapping with the JoinableTaskFactory’s Run or RunAsync method if necessary:

void Foo() {
 ThreadHelper.JoinableTaskFactory.Run(async delegate {
 await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();
 DoSomething();
 });
}

In the above example, we obtain a JoinableTaskFactory instance from the ThreadHelper.JoinableTaskFactory static property
as it exists within Visual Studio itself. Other applications should create and expose their own JoinableTaskContext and/or JoinableTaskFactory for use in code that run in these applications.
See our doc on consuming JoinableTaskFactory from a library [https://github.com/microsoft/vs-threading/blob/main/doc/library_with_jtf] for more information.

Replacing Dispatcher.BeginInvoke

When updating calls to Dispatcher.BeginInvoke, there are a few considerations to consider.

	BeginInvoke schedules the delegate for execution later.

	BeginInvoke always executes the delegate on the dispatcher’s thread.

	BeginInvoke schedules the delegate at some given priority, or default priority determined by the dispatcher.

To resolve a warning for such code, it is often sufficient to replace it with this, which is roughly equivalent:

await joinableTaskFactory.RunAsync(async delegate {
 await joinableTaskFactory.SwitchToMainThreadAsync(alwaysYield: true);
 DoSomething();
})

The first line in the delegate is necessary to match the behaviors of 1 and 2 on the above list.
When the caller is known to already be on the main thread, you can simplify it slightly to this:

await joinableTaskFactory.RunAsync(async delegate {
 await Task.Yield();
 DoSomething();
})

Matching behavior 3 on the list above may be important when the dispatcher priority is specified in the BeginInvoke call and was chosen for a particular reason.
In such a case, you can ensure that JoinableTaskFactory matches that priority instead of using its default by creating a special JoinableTaskFactory instance with the priority setting you require using the JoinableTaskFactory.WithPriority [https://learn.microsoft.com/dotnet/api/microsoft.visualstudio.threading.dispatcherextensions.withpriority?view=visualstudiosdk-2022] method.

Altogether, this might look like:

await joinableTaskFactory.WithPriority(DispatcherPriority.DataBind).RunAsync(async delegate {
 await joinableTaskFactory.SwitchToMainThreadAsync(alwaysYield: true);
 DoSomething();
})

Configuration

This analyzer is configurable via the vs-threading.LegacyThreadSwitchingMembers.txt file.
See our configuration topic for more information.

VSTHRD002 Avoid problematic synchronous waits

Synchronously waiting on Task, ValueTask, or awaiters is dangerous and may cause dead locks.

Examples of patterns that are flagged by this analyzer

void DoSomething()
{
 DoSomethingElseAsync().Wait();
 DoSomethingElseAsync().GetAwaiter().GetResult();
 var result = CalculateSomethingAsync().Result;
}

Solution

Please consider the following options:

	Switch to asynchronous wait if the caller is already a “async” method.

	Change the chain of callers to be “async” methods, and then change this code to be asynchronous await.

	Use JoinableTaskFactory.Run() to wait on the tasks or awaiters.

async Task DoSomethingAsync()
{
 await DoSomethingElseAsync();
 await DoSomethingElseAsync();
 var result = await CalculateSomethingAsync();
}

void DoSomething()
{
 joinableTaskFactory.Run(async delegate
 {
 await DoSomethingElseAsync();
 await DoSomethingElseAsync();
 var result = await CalculateSomethingAsync();
 });
}

Refer to Asynchronous and multithreaded programming within VS using the JoinableTaskFactory [https://devblogs.microsoft.com/premier-developer/asynchronous-and-multithreaded-programming-within-vs-using-the-joinabletaskfactory/] for more information.

VSTHRD003 Avoid awaiting foreign Tasks

Tasks that are created and run from another context (not within the currently running method or delegate)
should not be returned or awaited on. Doing so can result in deadlocks because awaiting a Task
does not result in the awaiter “joining” the effort such that access to the main thread is shared.
If the awaited Task requires the main thread, and the caller that is awaiting it is blocking the
main thread, a deadlock will result.

When required to await a task that was started earlier, start it within a delegate passed to
JoinableTaskFactory.RunAsync, storing the resulting JoinableTask in a field or variable.
You can safely await the JoinableTask later.

Examples of patterns that are flagged by this analyzer

The following example would likely deadlock if MyMethod were called on the main thread,
since SomeOperationAsync cannot gain access to the main thread in order to complete.

void MyMethod()
{
 System.Threading.Tasks.Task task = SomeOperationAsync();
 joinableTaskFactory.Run(async delegate
 {
 await task; /* This analyzer will report warning on this line. */
 });
}

In the next example, WaitForMyMethod may deadlock when this.task has not completed
and needs the main thread to complete.

class SomeClass
{
 System.Threading.Tasks.Task task;

 SomeClass()
 {
 this.task = SomeOperationAsync();
 }

 async Task MyMethodAsync()
 {
 await this.task; /* This analyzer will report warning on this line. */
 }

 void WaitForMyMethod()
 {
 joinableTaskFactory.Run(() => MyMethodAsync());
 }
}

Solution

To await the result of an async method from with a JoinableTaskFactory.Run delegate,
invoke the async method within the JoinableTaskFactory.Run delegate:

void MyMethod()
{
 joinableTaskFactory.Run(async delegate
 {
 System.Threading.Tasks.Task task = SomeOperationAsync();
 await task;
 });
}

Alternatively wrap the original method invocation with JoinableTaskFactory.RunAsync:

class SomeClass
{
 JoinableTask joinableTask;

 SomeClass()
 {
 this.joinableTask = joinableTaskFactory.RunAsync(() => SomeOperationAsync());
 }

 async Task MyMethodAsync()
 {
 await this.joinableTask;
 }

 void WaitForMyMethod()
 {
 joinableTaskFactory.Run(() => MyMethodAsync());
 }
}

VSTHRD004 Await SwitchToMainThreadAsync

Calls to JoinableTaskFactory.SwitchToMainThreadAsync must be awaited
or it is a no-op.

Examples of patterns that are flagged by this analyzer

void MyMethod()
{
 joinableTaskFactory.SwitchToMainThreadAsync();
 UIThreadBoundWork();
}

Solution

Add await in front of the call to JoinableTaskFactory.SwitchToMainThreadAsync.

This requires an async context. Here, we fix the problem by making the outer method async:

async Task MyMethodAsync()
{
 await joinableTaskFactory.SwitchToMainThreadAsync();
 UIThreadBoundWork();
}

Alternatively if found in a synchronous method that cannot be made async,
this failure can be fixed by lifting the code into a delegate passed to JoinableTaskFactory.Run:

void MyMethod()
{
 joinableTaskFactory.Run(async delegate
 {
 await joinableTaskFactory.SwitchToMainThreadAsync();
 UIThreadBoundWork();
 });
}

VSTHRD010 Invoke single-threaded types on Main thread

Acquiring, casting, or invoking single-threaded objects should be done after ensuring
that your code is running on the main thread.

This analyzer can be configured to:

	Recognize the objects that are single-threaded that are unique to your app or library.

	Recognize synchronous methods that verify the caller is already on the main thread.

	Recognize methods that switch to the main thread when the caller awaits them.
Calls to JoinableTaskFactory.SwitchToMainThreadAsync methods are pre-configured.

See our configuration topic to learn more about customizing this analyzer.

This analyzer also recognizes requirements to use the main thread transitively within your solution.
For example, if method A() invokes a type that we know from configuration requires the main thread,
and B() calls A(), then the B method also needs the UI thread transitively.
This analyzer flags B() as needing to call a method that throws if not already on the main thread
only when A() is written to call such a method.

NOTE: This analyzer requires full solution analysis.

Examples of patterns that are flagged by this analyzer

This example is based on the configuration available from the Visual Studio SDK
that defines IVs* interfaces as requiring the main thread.

private void CallVS()
{
 IVsSolution sln = GetIVsSolution();
 sln.SetProperty(); // This analyzer will report warning on this invocation.
}

Solution

First ensure you are running on the main thread before interacting with single-threaded objects.
Either throw when you are not on the appropriate thread, or explicitly switch to the
main thread.

This solution example is based on the configuration available from the Visual Studio SDK
that defines ThreadHelper.ThrowIfNotOnUIThread() as one which throws if the caller
is not already on the main thread.

private void CallVS()
{
 ThreadHelper.ThrowIfNotOnUIThread();
 IVsSolution sln = GetIVsSolution();
 sln.SetProperty(); // This analyzer will not report warning on this invocation.
}

private async Task CallVSAsync()
{
 await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();
 IVsSolution sln = GetIVsSolution();
 sln.SetProperty(); // This analyzer will not report warning on this invocation.
}

Refer to Asynchronous and multithreaded programming within VS using the JoinableTaskFactory [http://blogs.msdn.com/b/andrewarnottms/archive/2014/05/07/asynchronous-and-multithreaded-programming-within-vs-using-the-joinabletaskfactory/] for more info.

VSTHRD011 Use AsyncLazy<T>

The Lazy<T> type executes the value factory just once and
the value factory inherits the context of the first one to request the
Lazy<T>.Value property’s value. This can lead to deadlocks when
the value factory attempts to switch to the main thread.

Examples of patterns that are flagged by this analyzer

Using Lazy<T> where T is Task<T2>

When T is Task<T2> (because the value factory is an async method),
if the first caller had no access to the main thread, and the value factory
requires it, it will block. If later a second caller calls the Value property
and that second caller is blocking the UI thread for its result, it will deadlock.

var lazy = new Lazy<Task<int>>(async delegate // analyzer flags this line
{
 await Task.Yield();
 return 3;
});

int value = await lazy.Value;

Using synchronously blocking methods in Lazy<T> value factories

When the value factory passed to the Lazy<T> constructor calls synchronously
blocking methods such as JoinableTaskFactory.Run, only the first caller
can help any required transition to the main thread.

var lazy = new Lazy<int>(delegate
{
 return joinableTaskFactory.Run(async delegate { // analyzer flags this line
 int result = await SomeAsyncMethod();
 return result + 3;
 });
});

int value = lazy.Value;

Solution

Use AsyncLazy<T> with an async value factory:

var lazy = new AsyncLazy<int>(async delegate
{
 await Task.Yield();
 return 3;
});

int value = await lazy.GetValueAsync();

VSTHRD012 Provide JoinableTaskFactory where allowed

When constructing types or calling methods that accept a JoinableTaskFactory
or JoinableTaskContext, take the opportunity to supply one if your application
has a main thread with a single threaded SynchronizationContext such as WPF or WinForms.

Examples of patterns that are flagged by this analyzer

void F() {
 var o = new AsyncLazy<int>(() => Task.FromResult(1)); // analyzer flags this line
}

Solution

Call the overload that accepts a JoinableTaskFactory or JoinableTaskContext instance:

void F() {
 var o = new AsyncLazy<int>(() => Task.FromResult(1), this.JoinableTaskFactory);
}

Suppression

You can suppress the diagnostic by explicitly specifying null for the argument:

void F() {
 var o = new AsyncLazy<int>(() => Task.FromResult(1), null);
}

VSTHRD100 Avoid async void methods

Methods with async void signatures make it impossible for their caller to track
the entire asynchronous operation and handle exceptions that may be thrown by that method.
If the method throws an exception, it crashes the process.

Examples of patterns that are flagged by this analyzer

async void DoSomethingAsync()
{
 await SomethingElseAsync();
}

Solution

Change the method to return Task instead of void.

async Task DoSomethingAsync()
{
 await SomethingElseAsync();
}

A code fix is offered that automatically changes the return type of the method.

Event handlers

For event handlers, avoid async void by using RunAsync:

obj.Event += (s, e) => joinableTaskFactory.RunAsync(() => OnEventAsync(s, e));
}

private async Task OnEventAsync(object sender, EventArgs e)
{
 // async code here.
}

When using method group syntax as an argument, you can define the method with the required signature, without the async modifier, and define an anonymous delegate or lambda within the method, like this:

var menuItem = new MenuCommand(HandleEvent, commandId);

private void HandleEvent(object sender, EventArgs e)
{
 _ = joinableTaskFactory.RunAsync(async () =>
 {
 // async code
 });
}

Refer to Async/Await - Best Practices in Asynchronous Programming [https://msdn.microsoft.com/en-us/magazine/jj991977.aspx] for more info.

VSTHRD101 Avoid unsupported async delegates

C# allows you to define async delegates or lambdas and use them in contexts that accept
void-returning delegates, thus creating an async void method such as is forbidden by
VSTHRD100, but is much harder to catch when simply looking at the code
because for the same syntax, the C# compiler will create an async Func<Task> delegate
or an async void delegate based on the type expected by the method being invoked.

This analyzer helps prevent inadvertent creation of async void delegates.

Examples of patterns that are flagged by this analyzer

void StartWatching(ObservableCollection<string> oc)
{
 // This delegate becomes an "async void" method to match the EventHandler delegate type.
 oc.CollectionChanged += async () =>
 {
 await Task.Yield();
 };
}

void StartWatching(ObservableCollection<string> oc)
{
 // This delegate becomes an "async void" method to match the Action delegate type.
 Callback(async () =>
 {
 await Task.Yield();
 });
}

void Callback(Action action)
{
 // out of scope of sample
}

Solution

	Wrap the asynchronous behavior in another method that accepts a Func<Task> delegate.

	Change the receiving method’s expected delegate type to one that returns a Task or Task<T>.

	Implement the delegate synchronously.

void StartWatching(ObservableCollection<string> oc)
{
 oc.CollectionChanged += () =>
 {
 // The outer delegate is synchronous, but kicks off async work via a method that accepts an async delegate.
 joinableTaskFactory.RunAsync(async delegate {
 await Task.Yield();
 });
 };
}

void StartWatching(ObservableCollection<string> oc)
{
 // This delegate becomes an "async Task" method to match the Func<Task> delegate type.
 Callback(async () =>
 {
 await Task.Yield();
 });
}

void Callback(Func<Task> action)
{
 // out of scope of sample
}

Refer to Async/Await - Best Practices in Asynchronous Programming [https://msdn.microsoft.com/en-us/magazine/jj991977.aspx] for more info.

VSTHRD102 Implement internal logic asynchronously

Internal or private methods may be invoked by public methods that are asynchronous.
If the internal method has an opportunity to do work asynchronously, it should do so
in order that async public members can truly be async.

Examples of patterns that are flagged by this analyzer

public void PublicMethod()
{
 DoWork();
}

public async Task PublicMethodAsync()
{
 DoWork();
 await Task.Yield();
}

internal void DoWork()
{
 joinableTaskFactory.Run(async delegate // Analyzer will flag this line
 {
 await DoSomethingAsync();
 });
}

Note how DoWork() synchronously blocks for both PublicMethod() and PublicMethodAsync().

Solution

Remove the synchronously blocking behavior and make the method async.

public void PublicMethod()
{
 joinableTaskFactory.Run(() => PublicMethodAsync());
}

public async Task PublicMethodAsync()
{
 await DoWorkAsync();
 await Task.Yield();
}

internal async Task DoWorkAsync()
{
 await DoSomethingAsync();
}

Note how DoWorkAsync() now allows PublicMethodAsync() to do its work asynchronously
while PublicMethod() continues to synchronously block, giving your external caller the option
as to whether to do work asynchronously or synchronously.

VSTHRD103 Call async methods when in an async method

In a method which is already asynchronous, calls to other methods should
be to their async versions, where they exist.

Examples of patterns that are flagged by this analyzer

Task DoAsync()
{
 file.Read(buffer, 0, 10);
}

All methods where an Async-suffixed equivalent exists will produce this warning
when called from a Task-returning method.
In addition, calling Task.Wait(), Task<T>.Result or Task.GetAwaiter().GetResult()
will produce this warning.

Solution

Await the async version of the method:

async Task DoAsync()
{
 await file.ReadAsync(buffer, 0, 10);
}

VSTHRD104 Offer async option

When a publicly accessible method uses JoinableTaskFactory.Run, there should be
another way to access the async behavior without synchronously blocking the thread
so that an async caller can be async throughout.

This rule encourages this pattern by recognizing when some method Foo exists and
calls JoinableTaskFactory.Run that there is also a method FooAsync.
The recommended pattern then is for Foo to call FooAsync from the delegate
passed to JoinableTaskFactory.Run so that the implementation only need be written once.

Examples of patterns that are flagged by this analyzer

public void Foo() {
 this.joinableTaskFactory.Run(async delegate {
 await Task.Yield();
 });
}

Solution

Add a FooAsync method, and (optionally) call it from the Foo method:

public void Foo() {
 this.joinableTaskFactory.Run(async delegate {
 await FooAsync();
 });
}

public async Task FooAsync() {
 await Task.Yield();
}

VSTHRD105 Avoid method overloads that assume TaskScheduler.Current

Certain methods in the .NET Framework have overloads that allow specifying or omitting
a TaskScheduler instance. Always specify one explicitly to avoid the assumed TaskScheduler.Current
value, whose behavior is defined by your caller and may vary at runtime.

The “current” TaskScheduler is defined by the one that is executing the currently running code.
But when your code is executing without having been scheduled by a TaskScheduler (as is the case with most code),
then the TaskScheduler.Current property returns TaskScheduler.Default which schedules tasks on the thread pool.
This leads many to incorrectly assume that task scheduling methods such as StartNew and ContinueWith default
to using the thread pool when in fact their default behavior varies by your caller.

This variability in behavior leads to bugs when, for example, TaskScheduler.Current returns a TaskScheduler
that executes tasks on the application’s main thread and/or only executes one task at once, such as one obtained
from the TaskScheduler.FromCurrentSynchronizationContext() method.
Such a circumstance often leads to deadlocks or responsiveness issues in the application.

Always explicitly specifying TaskScheduler.Default (or other if appropriate) ensures your code will schedule
tasks in a predictable, consistent way.

No diagnostic is produced by this analyzer when TaskFactory.StartNew is invoked on a private instance
of TaskFactory, since it may in fact have a safe default for TaskScheduler.

Similar rules: CA2008 (DoNotCreateTasksWithoutPassingATaskSchedulerAnalyzer) [https://github.com/dotnet/roslyn-analyzers/blob/32d8f1e397439035f0ecb5f61a9e672225f0ecdb/src/Microsoft.NetCore.Analyzers/Core/Tasks/DoNotCreateTasksWithoutPassingATaskScheduler.cs]

Examples of patterns that are flagged by this analyzer

private void FirstMethod()
{
 TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
 Task.Factory.StartNew(
 () =>
 {
 this.AnotherMethod();
 },
 System.Threading.CancellationToken.None,
 TaskCreationOptions.None,
 uiScheduler);
}

private void AnotherMethod()
{
 // TaskScheduler.Current is assumed here, which is determined by our caller.
 var nestedTask = Task.Factory.StartNew(// analyzer flags this line
 () =>
 {
 // Ooops, we're still on the UI thread when called by FirstMethod.
 // But we might be on the thread pool if someone else called us.
 });
}

Solution

Specify a TaskScheduler explicitly to suppress the warning:

private void FirstMethod()
{
 TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
 Task.Factory.StartNew(
 () =>
 {
 this.AnotherMethod();
 },
 CancellationToken.None,
 TaskCreationOptions.None,
 uiScheduler);
}

private void AnotherMethod()
{
 var nestedTask = Task.Factory.StartNew(
 () =>
 {
 // Ah, now we're reliably running on the thread pool. :)
 },
 CancellationToken.None,
 TaskCreationOptions.None,
 TaskScheduler.Default); // Specify TaskScheduler explicitly here.
}

VSTHRD106 Use InvokeAsync to raise async events

Asynchronous events (those typed as AsyncEventHandler) must be raised carefully to ensure
all event handlers are invoked and awaited on.

Although C# lets you invoke event handlers naturally, it has no awareness of async event handlers
and thus will not let you correctly await on their invocation nor invoke them sequentially.

Examples of patterns that are flagged by this analyzer

public AsyncEventHandler Clicked;

async Task OnClicked() {
 await Clicked(this, EventArgs.Empty); // only awaits the first event handler.
}

Solution

Use the InvokeAsync extension method defined in the TplExtensions class and await its result.
This will ensure each event handler completes before invoking the next event handler in the list,
similar to the default behavior for raising synchronous events.

public AsyncEventHandler Clicked;

async Task OnClicked() {
 await Clicked.InvokeAsync(this, EventArgs.Empty); // await for the completion of all handlers.
}

VSTHRD107 Await Task within using expression

The C# using statement requires that the used expression implement IDisposable.
Because Task<T> implements IDisposable, one may accidentally omit an await operator
and Dispose of the Task<T> instead of the T result itself when T derives from IDisposable.

Examples of patterns that are flagged by this analyzer

AsyncSemaphore lck;
using (lck.EnterAsync())
{
 // ...
}

Solution

Add the await operator within the using expression.

AsyncSemaphore lck;
using (await lck.EnterAsync())
{
 // ...
}

VSTHRD108 Assert thread affinity unconditionally

When a method has thread affinity and throws if called from the wrong thread, it should do so without regard to any other condition. This helps ensure the caller will notice early during development that they are calling from the wrong thread. Extra conditions can hide the problem till end users discover an application failure.

Examples of patterns that are flagged by this analyzer

private int? age;

public int GetAge()
{
 if (!this.age.HasValue)
 {
 ThreadHelper.ThrowIfNotOnUIThread();
 this.age = DoExpensiveUIThreadWork();
 }

 return this.age.Value;
}

The problem here is that although the UI thread is only strictly required when the field is actually initialized, callers generally cannot predict whether they will be the first or a subsequent caller. If they call from a background thread and tend to be a subsequent caller, no exception will be thrown. But under some conditions in the app when they happen to be the first caller, they’ll fail at runtime because they’re calling from the background thread.

Solution

Move the code that throws when not on the UI thread outside the conditional block.

private int? age;

public int GetAge()
{
 ThreadHelper.ThrowIfNotOnUIThread();
 if (!this.age.HasValue)
 {
 this.age = DoExpensiveUIThreadWork();
 }

 return this.age.Value;
}

Configuration

This analyzer is configurable via the vs-threading.MainThreadAssertingMethods.txt file.
See our configuration topic for more information.

VSTHRD109 Switch instead of assert in async methods

Methods that are or can be async should switch to the main thread when necessary
rather than throw an exception if invoked from a different thread.
This allows callers to invoke any async method from any thread
without having to concern themselves with the threading requirements of a method that
can support its own threading requirements by switching.

Examples of patterns that are flagged by this analyzer

async Task FooAsync() {
 ThreadHelper.ThrowIfNotOnUIThread();
 DoStuff();
 await DoMoreStuff();
}

Solution

Use await SwitchToMainThreadAsync() instead:

async Task FooAsync() {
 await ThreadHelper.JoinableTaskFactory.SwitchToMainThreadAsync();
 DoStuff();
 await DoMoreStuff();
}

VSTHRD110 Observe result of async calls

Tasks returned from async methods should be awaited, or assigned to a variable for observation later.
Methods that return Tasks often complete and report their work via the Task they return, and simply
invoking the method does not guarantee that its work is complete nor successful. Using the await keyword
just before the method call causes execution of the calling method to effectively suspend until the called
method has completed and rethrows any exception thrown by the method.

When a Task or Task<T> is returned and is not awaited or redirected in some other way,
within the context of a synchronous method, a warning is reported.

This rule does not apply to calls made within async methods, since CS4014 [https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/cs4014] already reports these.

Examples of patterns that are flagged by this analyzer

void Foo() {
 DoStuffAsync();
}

async Task DoStuffAsync() { /* ... */ }

Solution

Convert the method to be async and await the expression:

async Task FooAsync() {
 await DoStuffAsync();
}

async Task DoStuffAsync() { /* ... */ }

When the calling method’s signature cannot be changed, wrap the method body in a JoinableTaskFactory.Run delegate instead:

void Foo() {
 jtf.Run(async delegate {
 await DoStuffAsync();
 });
}

async Task DoStuffAsync() { /* ... */ }

One other option is to assign the result of the method call to a field or local variable, presumably to track it later:

void Foo() {
 Task watchThis = DoStuffAsync();
}

async Task DoStuffAsync() { /* ... */ }

When tracking the Task with a field, remember that to await it later without risk of deadlocking,
wrap it in a JoinableTask using JoinableTaskFactory.RunAsync, per the 3rd rule.

JoinableTask watchThis;

void Foo() {
 this.watchThis = jtf.RunAsync(() => DoStuffAsync());
}

async Task WaitForFooToFinishAsync() {
 await this.watchThis;
}

async Task DoStuffAsync() { /* ... */ }

VSTHRD111 Use .ConfigureAwait(bool)

Some code bases, particularly libraries with no affinity to an app’s UI thread, are advised to use .ConfigureAwait(false) for each and every await because it can avoid deadlocks after those calls start on an application’s UI thread and the app later decides to synchronously block the UI thread waiting for those tasks to finish. Using .ConfigureAwait(false) also allows continuations to switch to a background thread even when no synchronous blocking would cause a deadlock, which makes for a more responsive application and possibly higher throughput of async operations.

Note that this scenario can also be solved using the JoinableTaskFactory, but many class libraries may not wish to depend on the application proffers an instance of that type to the library. Where JoinableTaskFactory does apply, use of .ConfigureAwait(false) is not recommended. See this topic [https://github.com/Microsoft/vs-threading/blob/main/doc/cookbook_vs.md#should-i-await-a-task-with-configureawaitfalse] for more on when .ConfigureAwait(false) and .ConfigureAwait(true) are appropriate.

This analyzer’s diagnostics are hidden by default. You should enable the rule for libraries that use to require this await suffix.

Examples of patterns that are flagged by this analyzer

Any await on Task or ValueTask without the .ConfigureAwait(bool) method called on it will be flagged.

async Task FooAsync() {
 await DoStuffAsync(); // This line is flagged
 await DoMoreStuffAsync(); // This line is flagged
}

async Task DoStuffAsync() { /* ... */ }
async ValueTask DoMoreStuffAsync() { /* ... */ }

Solution

Add .ConfigureAwait(false) or .ConfigureAwait(true) to the awaited Task or ValueTask.

async Task FooAsync() {
 await DoStuffAsync().ConfigureAwait(true);
 await DoMoreStuffAsync().ConfigureAwait(false);
}

async Task DoStuffAsync() { /* ... */ }
async ValueTask DoMoreStuffAsync() { /* ... */ }

Code fixes are offered for for this diagnostic to add either .ConfigureAwait(false) or .ConfigureAwait(true)
to an awaited expression.

VSTHRD112 Implement System.IAsyncDisposable

The Microsoft.VisualStudio.Threading.IAsyncDisposable interface is obsolete now that the
System.IAsyncDisposable interface has been defined for .NET Standard 2.0 and .NET Framework 4.6.1
by the Microsoft.Bcl.AsyncInterfaces NuGet package [https://www.nuget.org/packages/Microsoft.Bcl.AsyncInterfaces].

New classes looking to support async disposable should use System.IAsyncDisposable instead of Microsoft.VisualStudio.Threading.IAsyncDisposable.
Existing classes that already implement Microsoft.VisualStudio.Threading.IAsyncDisposable should also implement System.IAsyncDisposable so the async disposal option will be recognized by code that only checks for presence of the new interface.

Examples of patterns that are flagged by this analyzer

This class only implements Microsoft.VisualStudio.Threading.IAsyncDisposable and will produce the VSTHRD112 diagnostic:

using Microsoft.VisualStudio.Threading;

class SomeClass : IAsyncDisposable
{
 public Task DisposeAsync()
 {
 }
}

Solution

Implement System.IAsyncDisposable in addition to (or instead of) Microsoft.VisualStudio.Threading.IAsyncDisposable.
Add a package reference to Microsoft.Bcl.AsyncInterfaces if the compiler cannot find System.IAsyncDisposable.

In this example, only System.IAsyncDisposable is supported, which is acceptable:

using System;

class SomeClass : IAsyncDisposable
{
 public ValueTask DisposeAsync()
 {
 }
}

In this next example, both interfaces are supported:

class SomeClass : System.IAsyncDisposable, Microsoft.VisualStudio.Threading.IAsyncDisposable
{
 Task Microsoft.VisualStudio.Threading.IAsyncDisposable.DisposeAsync()
 {
 // Simply forward the call to the other DisposeAsync overload.
 System.IAsyncDisposable self = this;
 return self.DisposeAsync().AsTask();
 }

 ValueTask System.IAsyncDisposable.DisposeAsync()
 {
 // Interesting dispose logic here.
 }
}

In the above example both DisposeAsync methods are explicit interface implementations.
Promoting one of the methods to be public is typically advised.
If one of these methods was already public and the class itself is public or protected, keep the same method public to avoid an API binary breaking change.

An automated code fix may be offered for VSTHRD112 diagnostics.

VSTHRD113 Check for System.IAsyncDisposable

The Microsoft.VisualStudio.Threading.IAsyncDisposable interface is obsolete now that the
System.IAsyncDisposable interface has been defined for .NET Standard 2.0 and .NET Framework 4.6.1
by the Microsoft.Bcl.AsyncInterfaces NuGet package [https://www.nuget.org/packages/Microsoft.Bcl.AsyncInterfaces].

Existing code that tests for the Microsoft.VisualStudio.Threading.IAsyncDisposable interface on some object should also check for System.IAsyncDisposable and behave similarly in either case.
New code should consider only supporting the new System.IAsyncDisposable interface.

Examples of patterns that are flagged by this analyzer

The following code only checks for the obsolete interface and is flagged by this diagnostic:

using Microsoft.VisualStudio.Threading;

if (obj is IAsyncDisposable asyncDisposable)
{
 await asyncDisposable.DisposeAsync();
}

Solution

Fix this by adding a code branch for the new interface that behaves similarly
within the same containing code block:

if (obj is Microsoft.VisualStudio.Threading.IAsyncDisposable vsThreadingAsyncDisposable)
{
 await vsThreadingAsyncDisposable.DisposeAsync();
}
else if (obj is System.IAsyncDisposable bclAsyncDisposable)
{
 await bclAsyncDisposable.DisposeAsync();
}

VSTHRD114 Avoid returning a null Task

Returning null from a non-async Task/Task<T> method will cause a NullReferenceException at runtime. This problem can be avoided by returning Task.CompletedTask, Task.FromResult<T>(null) or Task.FromResult(default(T)) instead.

Examples of patterns that are flagged by this analyzer

Any non-async Task returning method with an explicit return null; will be flagged.

Task DoAsync() {
 return null;
}

Task<object> GetSomethingAsync() {
 return null;
}

Solution

Return a task like Task.CompletedTask or Task.FromResult.

Task DoAsync() {
 return Task.CompletedTask;
}

Task<object> GetSomethingAsync() {
 return Task.FromResult<object>(null);
}

VSTHRD200 Use Async suffix for async methods

The .NET Guidelines for async methods includes that such methods
should have names that include an “Async” suffix.

Methods that return awaitable types such as Task or ValueTask
should have an Async suffix.
Methods that do not return awaitable types should not use the Async suffix.

Examples of patterns that are flagged by this analyzer

This Task-returning method should have a name that ends with Async:

async Task DoSomething() // analyzer flags this line
{
 await Task.Yield();
}

This method should not have a name that ends with Async, since it does not return an awaitable type:

bool DoSomethingElseAsync() // analyzer flags this line
{
 return false;
}

Solution

Simply rename the method to end in “Async” (or remove the suffix, as appropriate):

async Task DoSomethingAsync()
{
 await Task.Yield();
}

bool DoSomethingElse()
{
 return false;
}

A code fix exists to automatically rename such methods.

Analyzer Configuration

Configuration is provided by way of AdditionalFiles, which is an item type
that you may use to add files to your project that provide data for analyzers
such as this one.

The name of the file added to AdditionalFiles is significant as it determines
which analyzer(s) will read it. For each use case below, a filename is given that
provides the described data. In each case, a pattern of filenames apply. For example,
if the filename prescribed is vs-threading.TopicA.txt, that filename as well
as others that extend that filename are considered. For example, these would all be
read by the analyzer too:

	vs-threading.TopicA.1.txt

	vs-threading.TopicA.2.txt

	vs-threading.TopicA.ABC.txt

These additional files may be provided by the project being built, or other NuGet
packages referenced by the project. A NuGet package that delivers an SDK or library
for example may provide an MSBuild file to be imported by the project that adds these
files.

Files need not have unique filenames. Multiple packages based in different directories may
all use vs-threading.TopicA.txt as the filename for their AdditionalFiles item.

These files may contain blank lines or comments that start with the # character.

Methods that assert the main thread

Code may assert it is running on the main thread by calling a method that is designed
to throw an exception if called off the main thread. These methods are used by
various analyzers to ensure that single-threaded objects are only invoked on the main thread.
These methods are identified as described below:

Filename: vs-threading.MainThreadAssertingMethods.txt

Line format: [Namespace.TypeName]::MethodName

Sample: [Microsoft.VisualStudio.Shell.ThreadHelper]::ThrowIfNotOnUIThread

Methods that switch to the main thread

Code may switch to the main thread by awaiting a method that is designed
to switch the caller to the main thread if not already there. These methods are used by
various analyzers to ensure that single-threaded objects are only invoked on the main thread.
These methods are identified as described below:

Filename: vs-threading.MainThreadSwitchingMethods.txt

Line format: [Namespace.TypeName]::MethodName

Sample: [Microsoft.VisualStudio.Threading.JoinableTaskFactory]::SwitchToMainThreadAsync

Members that require the main thread

Types or members that are STA COM objects or otherwise require all invocations to occur on
the main thread of the application can be configured into these analyzers so that
static analysis can help ensure thread safety of the application.
These are identified as described below:

Filename: vs-threading.MembersRequiringMainThread.txt

Line format: [Namespace.TypeName] or [Namespace.*] or [Namespace.TypeName]::MemberName

Sample: [Microsoft.VisualStudio.Shell.Interop.*] or [Microsoft.VisualStudio.Shell.Package]::GetService

Properties are specified by their name, not the name of their accessors.
For example, a property should be specified by PropertyName, not get_PropertyName.

Legacy thread switching members

Prior to Microsoft.VisualStudio.Threading, libraries provided additional ways to execute
code on the UI thread. These methods should be avoided, and code should update to using
JoinableTaskFactory.SwitchToMainThreadAsync() as the standard way to switch to the main
thread.

Filename: vs-threading.LegacyThreadSwitchingMembers.txt

Line format: [Namespace.TypeName]::MethodName

Sample: [System.Windows.Threading.Dispatcher]::Invoke

Full Solution Analysis

Analyzers that require Full Solution Analysis produce diagnostics that may not always be visible in Visual Studio.

Diagnostics reported by such an analyzer will appear in a full build log. They may also appear in Visual Studio’s Error List after a full build. But these diagnostics may disappear when the document they refer to is opened in the editor.

To ensure the diagnostics are always visible, even when documents are open, select the “Enable full Solution Analysis” option, as shown below:

[image: ../_images/fsa.png]Visual Studio Options -> Text Editor -> C# -> Advanced -> Enable full solution analysis option

Diagnostic Analyzers

The following are the diagnostic analyzers installed with the Microsoft.VisualStudio.Threading.Analyzers [https://nuget.org/packages/microsoft.visualstudio.threading.analyzers]
NuGet package.
Learn more about how to install and configure these analyzers.

ID | Title | Severity | Supports | Default diagnostic severity
—- | — | — | — | — |
VSTHRD001 | Avoid legacy thread switching methods | Critical | 1st rule | 🔡 Warning
VSTHRD002 | Avoid problematic synchronous waits | Critical | 2nd rule | Warning
VSTHRD003 | Avoid awaiting foreign Tasks | Critical | 3rd rule | Warning
VSTHRD004 | Await SwitchToMainThreadAsync | Critical | 1st rule | Error
VSTHRD010 | Invoke single-threaded types on Main thread | Critical | 1st rule | Warning
VSTHRD011 | Use AsyncLazy<T> | Critical | 3rd rule | Error
VSTHRD012 | Provide JoinableTaskFactory where allowed | Critical | All rules | Warning
VSTHRD100 | Avoid async void methods | Advisory | | Warning
VSTHRD101 | Avoid unsupported async delegates | Advisory | VSTHRD100 | Warning
VSTHRD102 | Implement internal logic asynchronously | Advisory | 2nd rule | Info
VSTHRD103 | Call async methods when in an async method | Advisory | | Warning
VSTHRD104 | Offer async option | Advisory | | Info
VSTHRD105 | Avoid method overloads that assume TaskScheduler.Current | Advisory | | Warning
VSTHRD106 | Use InvokeAsync to raise async events | Advisory | | Warning
VSTHRD107 | Await Task within using expression | Advisory | | Error
VSTHRD108 | Assert thread affinity unconditionally | Advisory | 1st rule, VSTHRD010 | Warning
VSTHRD109 | Switch instead of assert in async methods | Advisory | 1st rule | Error
VSTHRD110 | Observe result of async calls | Advisory | | Warning
VSTHRD111 | Use .ConfigureAwait(bool) | Advisory | | Hidden
VSTHRD112 | Implement System.IAsyncDisposable | Advisory | | Info
VSTHRD113 | Check for System.IAsyncDisposable | Advisory | | Info
VSTHRD114 | Avoid returning null from a Task-returning method. | Advisory | | Warning
VSTHRD200 | Use Async naming convention | Guideline | VSTHRD103 | Warning

Severity descriptions

Severity | IDs | Analyzer catches…
——— | ——- | ——————-
Critical | 1-99 | Code issues that often result in deadlocks
Advisory | 100-199 | Code that may perform differently than intended or lead to occasional deadlocks
Guideline | 200-299 | Code that deviates from best practices and may limit the benefits of other analyzers

Default diagnostic severity legend

| Icon | Meaning |
| —- | ——- |
| 🔡 | The analyzer only produces diagnostics when configured.

Configuration

Some analyzers’ behavior can be configured. See our configuration topic for more information.

Installing the threading analyzers

The threading analyzers built from this repo and consumable via the Microsoft.VisualStudio.Threading.Analyzers nuget package [https://www.nuget.org/packages/microsoft.visualstudio.threading.analyzers] are useful for virtually every app library and most libraries.
In particular, projects do not need to be related to Visual Studio in order for these analyzers to apply and improve the quality of your code.

This document outlines how to install the analyzers and offer guidance on how to optimally configure them.

How to install the threading analyzers

If you are using the Microsoft.VisualStudio.Threading NuGet package, you should already have the analyzers installed because they are brought in as a dependency of this package.

Some projects may not want a runtime dependency on Microsoft.VisualStudio.Threading, but the analyzers may still apply.
Install the analyzers using any of the methods described on the package landing page on nuget.org [https://www.nuget.org/packages/microsoft.visualstudio.threading.analyzers].
For example, you might add this tag to your project file:

<PackageReference Include="Microsoft.VisualStudio.Threading.Analyzers" Version="17.5.22" PrivateAssets="all" />

Or even better, add this to some broad Directory.Build.targets file so it can apply to all of your projects.

Remember to periodically update the version of the analyzer package you reference.
You should generally use the latest version available, without regard to the version of the application or threading library in use, so you get the best diagnostics.

Configuring the analyzers

There are many rules in the analyzer package.
The default severity levels for the various rules are not appropriate for every type of project.
To get the best default severity levels for your project type, please review these editorconfig recommendations and apply them to your project.

Some analyzers allow for specialized configuration that allows you to tailor them to your specific application or library to provide even more value to your team.

Dealing with suppressions

In some projects we find that some of the threading analyzers have been disabled because they were producing warnings that the project owner did not want to fix at the time.
We generally discourage disabling rules that apply to a project because of the deadlocks that may already exist or that can creep into a codebase over time.
If installing analyzers produces blocking errors or warnings and you cannot fix them all at once, suppress the warnings and schedule time to go back to review them soon.
The recommended way to suppress your “baseline” of warnings is with in-situ #pragma suppressions such as:

#pragma warning disable VSTHRD010 // Suppress warning in baseline when installing analyzers -- should review soon
bad.Code();
#pragma warning restore VSTHRD010

Suppressing specific occurrences in this way can be done in bulk using an automated C# code fix within Visual Studio.
Doing it for each individual occurrence is better than suppressing the entire rule ID because the analyzers will be allowed to flag newly introduced code while you have not yet reviewed your old code and re-enabled the rule.

If you suspect your project may have suppressed an analyzer rule project-wide, please look in the following common places for broad suppressions and remove them so that your project gets the analyzers run on them:

	MSBuild project file <NoWarn> properties that contain VSTHRD* warning IDs.

	MSBuild project files with <PackageReference> to the analyzer package but set ExcludeAssets="analyzers", ExcludeAssets="all" or IncludeAssets="none" to explicitly turn them off.

	.ruleset files that decrease severity or turn off VSTHRD* rule IDs.

	.editorconfig files that decrease severity or turn off VSTHRD* rule IDs.

Visual Studio specific analyzers

When a project targets Visual Studio specifically, it should also reference the Microsoft.VisualStudio.Sdk.Analyzers [https://www.nuget.org/packages/microsoft.visualstudio.sdk.analyzers] NuGet package.
This package delivers additional analyzers and configures these threading analyzers to be more aware of VS-specific APIs so that better diagnostics can be produced.

<PackageReference Include="Microsoft.VisualStudio.Sdk.Analyzers" Version="16.10.10" PrivateAssets="all" />

Note that although the SDK analyzers automatically brings in the threading analyzers due to a package dependency, you should reference the threading analyzers directly as well to bring in the latest version, since the SDK analyzers ships infrequently and thus brings in older versions of the threading analyzers by default.

About these .editorconfig files

This folder contains sample .editorconfig files applicable to various project types.

Choose the most applicable .editorconfig file based on your project type and its filename and the introductory comments that may be included as a header in each file.
Append the contents of that file to your own .editorconfig file in your repo.

Use of warning severity levels

When the analyzers use the warning severity level by default, or when the .editorconfig files in this folder set them, it is with the expectation that compilation warnings cause build breaks in PR/CI builds.
Using warning allows for a faster inner dev-loop because certain threading violations are permissible while drafting code changes, but should be fixed before code is merged into the main branch.

You can configure your CI/PR build to fail on compilation warnings by setting the MSBuildTreatWarningsAsErrors environment or pipeline variable to true.

If your repo does not have builds configured to fail on compilation warnings, consider elevating all the warning severites to error severities to ensure these serious issues do not get ignored.

More about specific project types

While several project types have specific .editorconfig files defined in this folder, some merit some additional explanation and guidance.

Broadly shared libraries (non-Visual Studio specific)

SharedLibrary.editorconfig

Libraries that may run in any process, whether they have a main thread or not, should code themselves defensively to avoid any dependency on the main thread so that applications that do not follow JoinableTaskFactory rules can avoid deadlocks even when synchronously blocking their main thread using Task.Wait() on code running inside your library.
In particular, shared libraries of general interest should always use .ConfigureAwait(false) when awaiting on tasks.

Learn more about authoring libraries following best threading practices.

Libraries that run inside a JoinableTaskFactory-compliant application

JTFFocusedLibrary.editorconfig

These are libraries that always run within a process that follows the JoinableTaskFactory rules, such as the Visual Studio process.
Because these processes may block the main thread using JoinableTaskFactor.Run or similar APIs, the most efficient thing for a library to do is not use .ConfigureAwait(false) everywhere so that its continuations may resume on the thread that is already blocking on its completion.

GUI applications and libraries specific to them

AppWithMainThread.editorconfig

This essentially captures all projects that are designed specifically to run inside an application that uses a SynchronizationContext on its main thread to keep code on the main thread, such as WinForms, WPF, Maui and Avalonia.

These projects are strongly encouraged to include the Microsoft.VisualStudio.Threading NuGet package as a dependency and the analyzer modifications below are consistent with that recommendation.

ASP.NET Core and console applications

AppWithoutMainThread.editorconfig

Test projects

Tests.editorconfig

Test projects have a high tendency to define async test methods that are only called by reflection, and the Async method name suffix is usually unwelcome there.

 _images/fsa.png
Search Options (Ctrl+E) P Analysis A
b Work ltems ~
4 Text Editor [] Perform editor feature analysis in external process (experimental)
General Enable navigation to decompiled sources (experimental)
File Extension
b All Languages Using Directives
b Basic lace 'System' directives first when sorting usings
g g
a& [] Separate using directive groups
ozt uggest usings for types in reference assemblies
Scroll Bars -
Tabs Suggest usings for types in NuGet packages
Advanced o
> CodeStyle Highlighting
IntelliSense Highlight references to symbol under cursor
b C/C++ Highlight related keywords under cursor
b CoffeeScript
b CSS Outlining
b Dockerfile v Enter outlining mode when files open
0K Cancel

_images/vs_threadpoolstarvation_event.jpg
24 Events ProjctsysOrchardCoreSolutionOpen- PerfMitic-Heraion-3.el in Temp (D:\Tem ProjectSysOrchardCoreSolutionOpen-Peretic-Reation-3.t)

_images/blocked_time_callers.png
2] Thread Time Stacks(600,404 metric) CpsPicassoEndToEnd-PerfMetrics-lteration-2.etl in Temp (D:\Temp\CpsPicassofndToEnd-PerfMetrics-Iteration-2.t) - o x

Ele View Diff Regression Preset Help Stack View Help (F1 Understanding Perf Dt Starting an Analysis Troubleshooting Tips
- Totals Metrc: 6004037 Count; 78,289.0 First: 33,267.253 Last: 42,815,040 Last-First: 9547785 Metric/inerval: 6288 TimeBucket: 2084 TotalProcs 4

St 33267054~ | Endl 42815030 - | Fin -
GroupPats: ~ [Bold FESIBSE ntoskmi:senviceCopyEnd ~ [URERR] Processst devenv (5644) ~

By Name 7 | Caller-Callee ? | Calllree 2| Callers ? | Callees 2 | Flame Graph 2 | Notes 2

Methods that call BLOCKED_TIME

Inc%? Inc? IncCt? Bxc%? B2 ExcCt? Fold? FoldCt? When? Firt? Last?
LOCKED_TIME o8[s930608 34043 oagls03061| 34043 [seasessnsassansasasansassasanlss 267,253042,815.040)
088[593,1740] 34191 00| [267.053(42,815.040)
owBAcpul? 7994796793 32171 oq] [s 067 053(42,815.040)
owb417 7994796793 32171 oq| [267.053(42,815.040)
7994796793 32171 oq] [s 067 053(42,815.040)
emelbasel? 7994796042 32136 00| [s 967.053(42,815.040)
69204156376 31687 00| [s 067.053(42,815.040)
203211591117 oq| [s 267.253(42,815.040)
icrosoftvisualstudio.containers tools.common package! Microsoft VisualStudio. Containers-Tools Common Services SolutionEvents SolutionEventsServiceremov| 22011376881 631 00| e 5 518.061[42.815.040)
microsoft visualstudio.containers tools package!Microsoft VisualStudio Containers Tools Package Debugging ContainerProjectBuildHandler. <Initialize>b_11.0(_ 220[1376881 631 0] e 34 218.061/42,815.040]

2291376861 631 og]
2qfizzeeel 631 od
2291376861 631 og]

[32.218061]42.815.040]
[34.218061[42.815.040]
[32.218061]42.815.040]

o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q

o o q
“kemes2 220fiz7esq 631 09 o Q[T e s 1606142815040
ez 220iz7esq 63 o9 | o QT e s 1606142815040
+[Thread (6776) CPU=4423ms 14]_85079] 1 oo q o _essssassssasaasasassasessasealsy 1506142815040
+[Thread (7768) CP 14] 8599 | oo o q o _ssessasessasessasesasessasealys 15.160[42,815.030
+[TThread (7312) CP 14] 85029 1 oo q o —sssssassssasaasasaasaseasasealsy 312.700(42,815.030)
[JThread (4956) CP! 13]_78127] | oo o q o __ssssessaseasaseasasessasealss 00380042,815.040)
+[TThread (7540) CP 1] 6zere 3¢ oo q q o[——_esssssasassssasaasasealz 094 53142815039
+[Thread (9152) CPU=2840ms 1] 6713 0 q o] —_sessaseasasessasesasealis 09.041[42,815.040)
+[Thread (7688) CPU=3553ms 1] ees2q 3 oo q o[essaseasasaasasaasassalzs 130363(42,815.040
+[Thread (1784) CPU=2869ms 1] eedl 2 oo o o q O essssessssesssseseeialag 194142(42,815.040)
+[Thread (1220) CP! 11]_65580] 23] o] q q q q 5959399555939995593955/36 754,616142,815.040|
+[Thread (8196) CP! 10| seres] 1 o] q q q q s5s535555353555535336 096.498142 815.040]
+[Thread (1168) CP! 0g| 48055 27] 0| q q q q 16985385585585555136.007.072[42,815.039)
+[Thread (8352) CP! o0g| 47890 23] 0g) q q q q 0538533538538535536 03.613[42,815.039)
+[Thread (2068) CPU=3340ms og| 47871 23] 0| q q q q 0538538538538535536,025.483(42,815.040)
+[Thread (8340) CP! o0g| 47849 23] 0g) q q q q 0s3ss33538938535¢36 028.633[42,815.040)
+[Thread (8164) CP! o0g] 47391 20] 0| q q q q 959853553853855]35073.506(42.815.040]
+[Thread (8356) CP! 06| 38208 EE| 0g) q q q q 2535533533535/38 091,652142 815.040]
[JThread (8324) CP! o¢[37822 31 _oq o q q €355353555553]30 027 641[42.815.040]
[JThread (6392) CP! o6 37596 34 oq 0 q q €353553535555]30 052 862(42.615.040]
[Thread (364 CP o 37317 3 oq o q q 5555353555553]30 050.25142.815.040]
+[Thread (6428) CPU=2682ms o6 3646 33 o0q 0 q q #353553535555]30 117.700]42.615.040]
[JThread (6128) CP! o¢[36a73 33 oq 0 q q 2555553555555]39 164,883]42.815,040]
+[Thread (7408) CP o6 3530 29 oq 0 q q £353553535555]30 710,543]42.615,040]
[JThread (3924) CP. o6 35869 28 oq 0 q o — e PP I FEESER

o Sssassssass

otes typed hare will be saved when the view 1o saved. £2 will hids)umhide

Ready Log

_images/cpu_stacks_showing_threadpool_starvation.png
4] CPU Stacks(7,446 metic) CpsPicassoEndTofind-PerfMetric-lteration-2.etin Temp (D:\Temp\CpsPicassoEndToEnd-PerfMetrics-Itration-2.ct)

Ele View Diff Regression Preset Help

= [
3326705~ il 22815030

Vst My App] __ \ide\2it->

Stack View Help (F1)

Understanding Perf Data

Starting an Analysis

Troubleshooting

ntoskmil%ServiceCopyE ¥

Process?% deveny (564 ©

Caller-Caliee 2 Calers 2 | Callees ? | Flame Graph 2 | Notes 2
Neme Inc%2 Inc? Bxc%2 Exc2 Fold? When? First? Last?
oot 100074461 00| o oma_swea acom o 2k _#oel3s 6753042815040
[Process32 deveny (5644) Args: 100074461 153| 1,137] 1.137| e A _mea_me oes o aK_¥bRl33 67753142 815.040]
+[Thread (7480) CPU=52494ms (Startup Threzd) 152011201 00 0] o[e___or__oeeon 03 353033267.253042.815.040)
+[Thread (7312) CPU=3444ms 76 se60| 00 o o [53279642[34313107]
+[Thread (7768) CPU=3610ms 70 s2e0] 0o o o 33.476334[34 218,425
+[Thread (6776) CPU=4423ms 66| 491.0] oo 0 ofF= [33.402701)34 218.554]
+[Thresd (7900 CP 65 2840 00| 0 Q= 33.202.840(20,103.62
[IThread (9160) CPL 51| 3780] [I q = 52_[36015.996[42.309.727]
+[Thred (2036) CP 36 2600 00| 0o 0 G35 __ee_eo__0_ocl33704817[42644.028]
+[Thread (1340) CP 34 2500 oo o o oo o o I3s08200342218.269]
+[Thread (3664) CPU=3409ms 28] 210] ool 0 q [33430706[39,324910]
+[Thread (8328) CPU=3405ms 28] 2050] oo 0 q [38.072900042,674.223]
+[Thread (8336) CPU=3332ms 27| 2030] ool 0 q [38.006.892042.678.101
+[Thread (7408) CPU=3435ms 24] 1750] oo 0 q [33457.819]39.232.727]
+[Thread (7732) CPU=2775ms 23 730 ool o o S o [3904255142197.402]

Noves typed here will be saved when che view is saved. 2 will hide/unhide

Completed: Computing Stack Traces (Elapsed Time: 0.127 sec)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/blocked_time.png
2] Thread Time Stacks(600,404 metric) CpsPicassoEndToEnd-PerfMetrics-lteration-2.etl in Temp (D:\Temp\CpsPicassofndToEnd-PerfMetrics-Iteration-2.t) - o x

Fle View Diff Regression Preset Help Stack View Help (F1] Understanding Perf Data Starting an Analysis Troubleshooting Tips
[o=c]

B A COCrTETE TR

oy Nome 2| CollrCalle | Callree 2 Hame Gragh?
Nome 2 Bkl Bol BeCtl el inc2 Gl Fod? FodCGt When? Ptz etz
saslsoszei 34243 osslsoizeos] 424 o i TS E T PET LTI
CPU_TIME 13] 7515] 44,046 13| 7.5155) 44046 0o Q[°wUEea. e1NC. 30 A6, 02 . 0o 2KeoFDRI33 967 253142 815.040|
ROOT 00| 0of 0| 100.0]600403.7) 78,289| 0o Q[ETrineaseaasaasaaasenanenneee133.267.253142,815.040|
Thread (7580) CPU=0ms 09 0l 0 16| 95478 1 0l Q[5359ssssssssssssassssssss9999922133 267.253142,815.040|
Thread (2736) CPU=4ms_ 09 0| 0 16| 95478 1 0l Q[53595395535533553392359539533955133 267.253142,815.040|
Thread (2872) CPU=2ms 09 0l 0 16| 95478 1 0l Q[5359ssssssssssssassssssss9999922133 267.253142,815.040|
Thread (1100) CPU=69ms 09 0| 0 16| 95478 1 0l (Q[ses959e9553535393353939939399953(33 67,253142 815.040)
Thread (2424) CPU=0ms 09 0l 0 16| 95478 1 0l (Q[sessssessss535999353599999399955)33 267.253|42,815.040
Thread (6204) CPU=0ms_ 09 0| 0 16| 95478 1 0l (Q[sessssessssas399353939995399955)33 67,253142,815.040)
Thread (8068) CPU=1ms 09 0l 0 16| 95478 1 0l (Q[sessssessss535999353599999399955)33 267.253|42,815.040
Thread (7932) CPU=3ms_ 09 0| 0 16| 95478 1 0l (Q[sessssessssas399353939995399955)33 67,253142,815.040)
Thread (6208) CPU=1ms 09 0l 0 16| 95478 1 0l (Q[sessssessss535999353599999399955)33 267.253|42,815.040
Thread (3724) CPU=1ms_ 09 0| 0 16| 95478 1 0l (Q[sessssessssas399353939995399955)33 67,253142,815.040)
Thread (6076) CPU=210ms 09 0l 0 16| 95478 87 0l (Q[sessssssssssass99393599939399A35)33 267.253142,815.040
'wpfgfx v0400!? 09| 0of o 16| 95478 a7| 0of (Q[sessssssssssassssssassssssasssss|33 267.253142,815.040(v

Noves typed here will be saved when che view is saved. 2 will hide/unhide

Cell Contents: BLOCKED_TIME

_static/down.png

nav.xhtml

 Table of Contents

 		
 Threading documentation

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

